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I. INTRODUCTION

This dissertation develops real polynomial representations of
functions of multi-valued discrete varigbles, A multi-valued discrete
variable is one which can take on only a finite number of discrete values,
Application of the real polynomials is made to networks containing, for
the most part, ternary devices,

One of the advantages of the real polynomials when analyzing networks
with multi-valued logic is that they follow the usual rules‘ofkalgebraic
manipulation without special conventions, In éddition, they are useful
for approximation in the least squares best fit sense, are useful in
describing weighted and non-weighted codes, are useful in describing
functional decoding, and are umseful in interpolation,

Other types of algebras with special conventions have been developed
(6). A modular algebra has been discussed by Bernstein (1), Algebras
referred to as Post algebras in the literature were initiated by Post (8).
Hanson (5) presents an algebra for analyzing a ternary device,

Binary devices are widely used in the engineering art, Boolean
“algebra has been well developed for handling networks of binary devices,
Recently, Sander (12) has developed a real polynomial algebra for handling
the logic associated with binary devices,

Though not as widely used, devices exhibiting more than two discrete
states do exist (2, 4, 6, 7, 11, 13), Perhaps, with the inventive genius
of engineers and sclentists at work, more such devices will be invented,
The state of a multi-state device may be different voltage levels, differ~

ent current levels, different phases of some signal with respect to a



reference signal, or a combination of the preceding, The real polyno-
mials developed in this dissertation are useful in describing the logic

associated with multi-state devices,



II. REAT, POLYNOMIALS OF p-ARY VARTABLES

A, Arbitrary Functions

Definition 1:

A p-valued variable is a variable x, that can take on only one p

finite real values xj s xj2, esey xjp where p is an inbteger greater than

zero and where xjm % xjn when m # n,
Definition 2:

A complete function of n multi-valued discrete variables where each
variable is a p-valued variable, but p is not necessarily the same for
each variable, is a function defined for all possible combinations of
values of the n variasbles., An incomplete function is a function of
multi-valued discrete variables that is not complete.

Observe that a complete function of two two-valued veriables and one
three-valued variable must be defined for the twelvé possible combinations
of the three variables,

Any function of multi-valued discrete variables can be represented
by a finite table listing the possible combinations of values that the
variables Xj take on and the value of the function for each point.

An example of such a table for a complete function of two two-~valued
variables and one three-valued variable is shown in Table 1.

Table 1, General function of two two-valued varisbles and one three-
valued variable

%3 %2 * £y 3 %)

% % %1 1



Table 1 (Continued)

Xj s Xy f(xl: X5, %5)
1 1 o

X5 X2 Xl V. o
1 L2 !

% 2 1 I3
1 L2 L2 ;
*3 2 1 L

2 1 1
XB X2 Xl y5
2 L1 L2 ;
*3 2 1 6
2 2 1
xz X5 X y7
o % x,° v
3 1 1
35 X, Xy y9
X35 xgl L2 .
1 10
3 L2 L1
*3 ) 1 Y11
3 L2 L2
%3 > 1 Yo

Definition 3:

A set of p-ary variables is a set K15 Xpy eees X of p-valued
variables such that xll = xgl = eee = xnl, x1? = xp_2 T eee T xne, coes
le = XEP = ese = an.

Definition L:

The variable Zj is a p-walued varlable such that z.l = 0, zj2 =1,

zJ.3 =2, eeey ij =p - 1.

It follows directly that a set of variables zj is a set of p-ary
variables.
Definition 5:

The variable vj is a two-valued variable such that vjl = -1 and



v.2 =+ 1,
J .
It follows directly that a set of variables vj 1s a set of binary
variables,

Definition 63

The variable tj is a three~valued variable such that tjl = -1, t32=0,
and t.5= + 1.

J

It follows directly that a set of variables tj is a set of
ternary variables,

Clearly, the following relation exists between a three-valued

varisble z. and the tj variable
z.-1=+t, . (1)
A function of two three-valued z variables i1s shown in Table 2,

Table 2, General function of two three-valued z variables

z) % f(zl, Z,)
0 0O yl

0 1 ¥

0] 2 yB

1 0 Yy
1 1 Vs

1 2 yé

2 0 I

2 1 g

2 2




We now proceed with a theorem which allows us to express functions
by means of a real polynomial in 23 directly.,

Theorem 1: Given any.complete function f of two three-valued
variables, z4 and Zp, such as shown in Table 2, this function can be
expressed as the following real polynomial,

£(z15 25) = ¥y (1-25)(2-2,) (12, ) (2-2, )3

+ v, (1-z,)(2-2,) (21)(2-2,)3
+ 7 (1-2,)(2-2,) (1) (2, -1)%
), (2,)(2-2,) (1-2,)(2-21)3
+ v (2)(2-2,) (2)) (22, -
+ g (2,)(2-2,)(21) (2-1)3
+ ¥y (2p)(2p71) (12 ) (22 )%
+ ¥g (25)(2p-1) (zg) (2-2))%
+yg () (2571 (2) (2 *1)3
Proof: Substitution of the values of z. and 25 from the first row

1
of the function table, Table 2, yields

£(0,0) = y1(1) + y,(0) + ¥5(0) + 7),(0) +y5(0) + yg(0) + yo(0)
+ yé(O) +35(0) = ¥y (3)
Similarly, substitution of the values of zq and Zp from the K-th row of
the function table gives
£z Zog) = ¥1(0) + wow + ¥ 1(0) + wp (1)
+ Y1 (0) + eee + ¥5(0) = ¥y (1)
‘Thus, the polynomial of Equation 2 has been shown to satisfy the require-
ments of the function table,
Theorem 1 is easily generalized to functions of multi-valued

discrete variables, The procedure is to write the polynomial in the form
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f(xl, Xps eees xn) = y,hy +.y'2h2 + y‘5h5 + eue | (5)
where substitution of the values of the set xj from the K-th row of the
'function table causes hK = 1 and hj = 0 where J % K.'lIn order to
1llustrate the concepf further, consider the function of Table 1, This

function may be represehted by the following polynomial,

£(xys %o %5) =7y (e ) (e 2o 2) (el )

(36,3, ) (=2, (35,2 (3522
(Xle-xll) (xgl-xgg) (J%l-x—f) (x31-2<55 )

. (30, %) (=, ) (g2, %) (5,
> (xll-xle) (x,7-x,0) (x51-><32) (X31-x35 )

., (30,20, ) (gt ) (5257 (o)
¥ (P 1) 0P G (o)

.y (372, %) (2,7 (x3-x51) (x5-x33 )
2 (75 ) (M) (352-331) (>c32-><55 )

. (10 ,) (e (o) (o2
6 (Xlz'?‘ll ) (xgl-xge) (%2_}%1 ) (}%2_}%5 )
., (32,5, %) (o) (o5 (o)
T (M35 G -, 1) (57 (%)

(-2, ) (3, 7) (x5-x51) (x5->%5)
Y873

(] _xll) (ng-xgl) (}%2_}%1) (}%2_%5)

(xy-%,7) (2,0 (x5-x31) (x5-x32>
79 (o, T 2) (b, 2) (%5 ) (}%3 _xal)




., (g -y ) (xgmie ) Gy ™) (o)
Y G D (k) (><35 -:%l)_(xz,3 -9%2)

vy (Xl-xle) (x,-x,") (}%-x;) (x5 -1%2)
) G ) (}‘55"31) (x” _’%2)

(e -, ) (e, ) (g ™) (o)

Y
12 2 _1 2 1 3.1 5 .2
(e "= ) G 2 ) (70 (577 (6)
Substitution of values ofvxl, X5 and x5 from the K-th row of Table 1
yields
f(XlK: XEK’ X51{) = yK (7)

which shows the corfectness of the Polynomial 6,
B, Change of Variables
Theorem 2: If xj is a p-valued variable and r. is another p-valued

variable, the following relation exists between Xj and rj:

X.-X 1 X.-X 2 X 2-x 1
r. =15+ 32 J 1 (r.z-r.l + =9 2 - Jl (r.5-r.l)-(r.2-r.l) +
4 X, =X, J d X.B—X X.B-X. J J J J
J J 7 Jd 7
) 2 1 3 2 3 .2 2 1
X,-X, (x.%=x.7) (x.”-x.%) X, =%, x.-%,
s (= s (rju'rjl)' e - rjl) - (S5
X, =X. (x, ~x.7) (x, =x.%) X, =X, J X.” =X,
J J J J J J J J Jd d
5 1 2 1
r., =¥, - r, -r. -+ ese 8
(r7x)- (2, r,0)) + eel))) (8)
The proof follows directly since substitution of Xj and ij in Equation 8
ives'r. =r K
€ I

If xj is a two-valued variable and rj is another two-valued variable,

Equation 8 becomes

1
1 *57%s o 1 . ‘

r. =71, + —— (T, ~-T.

37T T TEl T ( 5Ty 9)

J 7d
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If x‘j is a 3-valued variable and rj is another 3-valued variable,

Equation 8 becomes

1 x.—x.l x.-x.2 X.Q-x 1

- J 2 1 Jd 7 Jd 3.1 2 .1
. =T, b r. -1. -+ . "I'. - R o
3 J 2yt ( j T3 35 2 ( Sl (rJ J ) (ra *3 1)

x. - X, .
J J v d J J J (10)‘
It is seen that the relation (8) is not, in general, linear between

x. and r,,
J J
C. Orthogonal Variables
Consider the function of Table 2 which has the polynomial representa-
tion given by Equation 2., Examination of Equation 2 shows that another
form of the function is
2 2 2 2
f(zl, Z,) = @aagt 8,7, + 858, + 8)8,° + Ayt 8gZy Byt 802, T+ BgEiZ,
2 2 .
tagly Z, (11)
where the a's are constants determined by the y!s of Table 2 and ao is

not zero, Equation 1 shows that a linear relationship exists between the

three~valued zj and tj so that f(zl,zg) may be expressed as a function

g(tl, te) as follows.

flz., z.) = g(t., t.)
R R UL 2
= KK+ K bo+ Kbt Kbt b Kot o+ Kb %4 Kot 26+ Kot b2
= KKt Kbyt Kgbpt KyBitot Kby o Kby Koty "ot Kgba %y
2, 2
+ Kgt, %%, i (12)

where the K's are constants determined by the y's of Table 2 and KO is

not zero,
There are nine terms in either Equation 11 or 12, If we let m,

denote the i-th term of either Equation 11 or 12 (i=l, 2,...,9), neither

Equation 11 nor 12 possesses the orthogonal property that
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9 N . 0 |
>, Byl = O 14 (13)
K=1
where K is an index on the rows of Table 2 and m, is the i-th term of
either Equation 1l or 12 evaluated for the values of the variables from
the K-th row of Table 2,
It is possible to generate & nine term polynomial in the variables
tj (or Zj) representing g(tl, t,) whose terms satisfy the orthogonal

relation of Equation 13, The terms of Equation 12 with the constants .

. . 2 2 2
K, (1 =1, 2, veu, 9) ignored are K, By th, T, by s By, bty
2 2, 2 . .
tltE and tl t2 where KO is not zero.
Let
a, =X, (14)
Let

%Y = 9 + Ty o (15)
where dEl is a constant,

If 9 and q, are to be orthogonal, then we must choose the constant
d91 of Equation 15 in such a way that

9
>, Yg%g = © | , (26)

=1

Then, substituting Equation 15 in Equation 16 gives

92 9
2
d o} + 5: t. 4.~ =0
= 21 I o KUK
o 9
94,,X, + K, z by =0
K=1

d, = O (17)
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Set dEl = 0, This causes 9 and % to be orthogonal,

Next, let
a4 = d51q1 + <352q2 + b, (18)
where 631 and d52 are constants,
It 9 and q5 are to be orthogonal, then
92 (
Oz G =0 & 19)
=1 3K 1K
Equation 19 may be used to find d5l since q_l and 9, are known to be
orthogonal. Substituting Equation 18 in Equation 19 gives dBl = 0, Set
d5l = 0, This causes ql and 95 to be orthogonal,
Similarly, set d52 = 0 since this causes
5 | | (20)
a. =0 20
= Bxix

and % and q_5 are then orthogonal,

The process may be continued by letting

Q, = dyy9p F Gpls + dyz9 + )" (21)
where dhl’ d42, and th are constants, |

Find dh from

1
<
Find dhE from
s (=)
q =0 23
= %K
Find der from
9
K=1

Then 9, will be orthogonal to 95 to %L and to q5.
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The process thus far indicated is continued to find qs, s

‘ q8’ q9. The results are

4 = Ko

% =t
q5-t2
qu*f'?
5=t -5

% = %1%

q = (t,° --§~) t,

2 2
q8 = tl (tg - -5-)

2 2 2 2
q9 = (tl - 3) (tg - 3')

where, for 1 =1, 2, .., 9, and j =1, 2, ..., 9,

and

9
> Ul =0 1A

K=1

NeX‘b, let, for i = l, 2, XX ¥ 9}

p i——
i = °
; 'qle
RV
Then, for i =1, 2, 44s, 9 and j =1, 2, eeus 9,
5 /
P.:pP. =0 i J
= iK* jK
2 2
2 Py =1 .
K=1 i

Equation 12 may be written as

(1)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)

(33)

(34)

(35)

(36)
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g(tl, t2) = ¢ Py + Cop, + C3P5 + C)D) + Py + Ceby + coPy + Cglg + cPg
(37)

where the c's are constants determined by the y's of Table 2, The follow-

ing procedure may be used to find the c¢'s, From Table 2,

Vg T C1Pig T CoPog * CxPzyp + )Py + CePoi * CePgr t CPry + CgPgr
+ 8
°gPok (38)
where K is an index on the rows of Table 2 and Pix (i =1, 2,.0., 9) is
pi evaluated for the values of the variables from thé K-th row of the

function table., Then, multiplying Equation 38 by piK and summing over the

rows of the function table yields

9 9
2 Vb= 2 chp. (39)
g1 BT gn g, O |
Using Equations 34 and 35 gives
9
¢; = 5, ¥g Pig - (o)
- K=1

At this point, a summary of the above ideas is in order, A function
of n multi-valued variables may be written, &s indicated in Theorem 1
or as in Equation 6, This complete function may then be written in a
form like that of Equation 11 or Equation 12, The terms of the latter
form do not, in general, satisfy the orthogonality relation indicaﬁed by
Equation 13, Using the procedures indicated from Equation 14 through
Equation 24, orthogonal terms may be developed which are designated as
Qe Next employ Equation 34 to find D, . Then, if N is the number of
rows of the function table defining the function and K is an index on

the rows of the function table



1h

N ;
D PP =0 if (L)
K=1

for 1 =1, 2, eee, Nand j =1, 2, .ve, No Also

N
Z piK2= 1. (k2)
K=1

The function f (xl, X5y sesy X ) mey then be expressed as -

T
f (Xl’ Xns eees Xn) = jg: CrPm ) (45)

m=1
where T 1s the number of terms in the polynomial representing f(xl,XE,...,

‘ xn).

-

Let Vi denote the value of f(xl, X5 eees xn) for the values of the

variables from the Kth row of the function table,

yK =f (X]KJ XZK} LI XI’IK) ’ ()'l'll')
Then T
Vg = 2 c D " (45)

The c's may be found by multiplying Equation L5 by Psyo summing over the

N rows of the function table, and interchanging the order of the summation,

N N T T N :
z YPix = 2, 2, CnPmPix = S %m >, PrgPix (46)
K=1 K=1 m=1 m=1 K=l
Using Equations 41 and 42 gives
N
¢1 = Z YkPix ' (v7)

K=1
If the orthogonal p; are generated, the polynomial representing the

function may be found by using Equations 43 and 47. This may be more
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convenient than using the method indicated by Theorem 1 to find the
polynomial,

. It is shown by'Sander (12) that the variable Vs of Definition 5
leads to a polynomial whose terms are orthogonal for a function of any
number of two-valued variables, Thié makes vj of great convenience in
dealing with functions of two-valued variables, As shown bj Equation 9,
a linear relation exists between vj and any other two-valued variable x..

The variable tj of Definition 6 is a useful three-valued variable
since it does lead to simplifications in finding orthogonal terms of the
p; type. Equation‘l shows that a linear relation exists between a three-
valued Zj and tj. However, Equation 10 shows that a linear relationship
does not, in general, exist between tj and any other three-valued variable
Xj‘ If working with three-valued variables other than zj or tj where
no linear relation exists between the variables and zj or t., it is
sﬁggested that orthogonal terms of the p; type be generated in terms
of the.three-valued variables, This suggestion is extended to functions
of multi-valued discrete variables, The suggestion is felt advantageous
over working with zj (or tj) and making a nonlinear transformation back

to the variables of interest,

It is noted that a complete function ©f two two-valued z variables
can be written as

f(Zl, zg) = clpl + 02P2 + C5p5 + c)_l_pll_ ()-1-8)
where the c's are constants and the p's, which satisfy Equations 41 and
42, are given by

=

ol

(9)
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Pp=7 -2 | (50)
P57 3 (51)
p, =2 (3.2, - 32y - 37 + 1) = 2(z,- 2)(z,- 2) (52)

D, Approximation and Least Squares Fitting

In some cases, it may be desirable to find an approximate function
of n multi-valued variables that fits a given complete funetion in
accordance with some error criterion, The error criteria of.this section
ié the method of least squares,

Let K be an index on the N rows of the function table (as before)
.and let Vg denote the actual valué of the function evaluated for the
values of the variables from the Kth row of the function table as in
Equation 44, Let Yk denote the value of the approximating function
evaluated for the vélues of the varisbles from the Kth row of the function

table, The coefficients of the approximating polynomial are then to be

chosen so that
N :
B S Gy T)® (53)
K=1
is a minimum,
The orthogonal pivof Equations 41, 42, 43, and 47 are quite conven-
tent in least squares approximation,
Theorem 3: Given any finite complete function of multi-valued
variables expressed as shown in Equation MB, the appraximate function
formed By deleting one or more of the terms on the right-hand side of

43 is the least squares best fitting function in the remaining terms,

Proof: Equation 4% is rewritten here.
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X T
" (xl, ng cees xn) = 2 e P (43)

Since the order in which the terms on the right-hand side of Equation .43
are written is insignificant, assume only the first J terms on the right-
hand side of Equation 43 are kept (1 < J < T), and the remaining terms
are deleted, In accordance with Equation 45, the exact function values
are given by

T

z: Pk

m=1

Ix

CiPyg + CoPpg + CzPay + ese F Cplpe o (L45)

The approximate function values yK can be written as

J
Ao Zc,
Y = m Pnk
=1
—_n ! 1 4 k4
= eyt Dig ket Dop kgt Pyp +oees oyt Py (54)

where cl’, c2’, cons cJ’ are the coefficients which make the approximate
function the least squares best fit to the complete function,

The squared error, which is greater than zero, is then given by

N A
=1
N N
2 A £ 2
= Ve -2 D Wt St ¥
K=1 K=1

N J J
2 . 2
vg + Sy B oept g v (5 ep'egd”l  (55)
= K=1 =1 =]

Differentiating Equation 55 with respect to CL', I=l, 2, see, J, and

setting the result equal to zero ylelds J equations of the form



- N J
_ = - 1 =
- S o2 (ol t g DY Oy’ Prg) =0
L K=1 m=1

or
N J N
zp ZC'p' = 20 wp
k=1 K g, B OTm ey TKIK

Rearranging the summation on the left gives

J N N
2 °n 2 PryPuk = Z P -
m=1 K=1 K=1

Making use of Equations 41 and L2 gives
N
| B
C = D, VePrx -
K=1

From Equation 47, we find

BE= e + 2 + + 2
=Cre1 T Crap cee T Cy
X 2 - 2.2 .2
bl 2 YK l 2 s e J
K=1
N o Y. Ao
L Z YK = yK .
K=1 K=1

Squaring Equation 45 yields

2 _ 2
yK - (clpl'K + c2p2K T eee Tt chT.K) .

(56)

(57)

(58)

(59)

(60)
Q.E.D.

(61)

(62)

Carrying out the squaring indicated by E uation 62 and summing

62 over the rows of the function table gives
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N T T
ZYK= Z(clle chmK+c2p2KZCPmK
K=1 m=1

T
+ ees + CTPTK z; cmme)
m=1
ZCP Zcp NZcp %cp
171k K 2Pox K
K=l m=1 K=1 m=1m
N o
Foeee + Kzzlchm chmK . (63)

Rearranging the order of the summations on the right-hand side gives

N T N i W
2
Z Y = Z €%y 2 PixPrx Z C2Cm Z PoxPrx
K=l m=1 K=1 m=1 K=1
T
+ eee Z pTK P ¢ (64)

myl K=1

Making use of Equations 41 and 42 yields

A2 2 2 2
ZyK—cl+c2+...+cT . (65)
K=1
Similarly, we write Yx in accordance with the results of Theorem 3

as

+ LA A J c

Fa)
Vg = C1 Pix t CoPoy 7Pk ¢ (€6)

Using the same procedures as those indicated in Equations 62 through 65,

we find

N2 2 2 2
Z Vg =0 tCy *toeesteg (67)
K=1
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The squared error is then given by

N
= _h e
E = Zz (v - )
K=1

N

2
2: (eqPyy + CpPpy * wee + Cpbpy - C1Pyy = CpPpyg = ees = By
K=1

N

2
25 (Cr41Pranx + CouoPraog * ove + CrPg)” - (68)
K=1

1]

If the ﬁroceﬂures indicated from Equations 63 through 65 are carried

out on Equation 68, the result is Equation 61

2 ° 2
E=cyy *Cup *oeeet oy
N
_ :E: v 2 _.,2_.,°2_ 0 2
& % 1 > 7
N N
‘ 2 A2
= EZ Y :E: g . (61)
K=1 =1

Theorem 3 shows that a complete function written in the form of
Eépation 43 can be approximated by a least squares best fit by dropping
one or more of the terms of Equation 43, The squared error is given by
Equation 61, A good approximating function would be one that made the
ratio R (0 < R < 1) of Equation 69 small,

Re —Beee (69)

N 2
>, %
K=1
E, Incomplete Functions

An incomplete function of multi-valued variables is not defined for
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all possible combinations of the variables., Table 3 shows a function of
two three-valued z variables for which only six of the nine possible
combinations of the variableé produce a defined value of the function,

Table 3, An incomplete function of z. and z

1 2
Z?_ Zl f (Zl: Z2)
0 0 yl
0 2 yB
1 0 ¥y
1 2 y6
2 0 y7
2 2 y9

There are an infinite number of polynomials in zi and Z, that will'
represent the function of Table 2, each giving a different set of values
to the undefined points, One convenient choice would be to define the
function aé being zero at the previously undefined points,

However, consider Table 4 where all possible conmbinations of Zq and
z, are presented and where undefined values of the function are repre-~

sented by u's in the function value volumn,

Table 4, A complete table of an incomplete function

0 1 ‘ U, (undefined)
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Table 4 (Continued)

Zy 2 £ (21, 2,)

0 2 s

1 0 ¥,

1 N 1 {15 (undefined)
1 2 Vg

2 0 y7

2 1 ug (undefined)
2 2 | ¥g

A polynomial representing the incomplete function can be found either
through the method of Theorem 1 or by working with orthogonal terms of

the 1 type using Equations 41 and 45, The polynomial that results is
£ (20, 2p) =y, + (-2, +2u - % v5) 7y + (- 2 yp2y, - % ¥7)2p

2 2
AN AN AR CR IR R O
+(‘Eyl-5uz+%y5-By.h+uu5"y6+%y7"u8+%y9) ZlZ2
' 2
+('%yl‘“%"?‘%%*yh'gus*%'%%{*%’%'Tlfy9) 23 %o

. 2
*('%Yl"uz‘Tlfy5+%yu'2“5“”%—“3’6'%3’7*“8'%3’9) 1%

2 2

+(%yl'%ug+%y5'%Yu+u5'%y6+%y7'%u8+%fy9)leg (70)

It is noted that u,, U and ug may be arbitrarily chosen to make

the coefficients of some of the terms equal to zero, Elimination of
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terms from the polynomial representing the function may be advantageous

in certain applications, As an elementary example, the choice of
1 1
Uy =3 Y IR ~ (71)

eliminates the 21? term from Equation 0.

In addition, the polynomial which is the least squares best fitting
approximation of an incomplete function may be of interest, Since the
function may be defined in an infinite number of ways, in general, at the
undefined points, orthogonal terms are of no particular aid in finding
the least squares best. fit, Generally, nc polynomial exists which
represents the function exactly and becomes a least squares best fit in
the terms remaining after some of the terms are dropped,

However, the following approach will yleld the least squares best fit
for approximating an incomplete function, ILet the approximate value of
the function for the Kth row of the function table be represented by V¢
and let m, denote the terms which are functions of Xj that aie retained
in the approximating polynomial, Then

Vg = Cifix T oMok *oeee * Oy (72)
where the cls gre constants and m e is the evaluation of the my term
for the values of the variables from the Kth row of the function table,

The c?s are chosen so that the polynomial

P =gy ¥l ¥ ewe ¥ ol ()

is the least squares beét fit to the incomplete function., Then, if Vg
is the exact value of the function for the Kth row of the function table
and N is the number of rows in the incomplete function table, the c's

are chosen to minimize
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N

Pl

E = z (v - ¥¢)®

K=1
N

= 2 (v = eqiyg = Colipe = eee = cmy)® (7h)
-1

Differentiating Equation Tk with respect to Cp =1, 2, oo, 1,

and setting the results equal to zero yields n equations in n unknowns

of the form
N N N
cq Zmucmm*cezmzx‘”m*"'*cn ZmnKmLK
K=1 K=1 K=
N
= Z Vg e . (75)
K=1

The system of equations indicated by Equation 75 can usually be
solved to give the desired least squares polynomial coefficients of
Equation 75, As the number of terms in Equationd increases,'digital
computer solutions of the system of equations becomes the only practical
means to find the coefficients, Thus, finding a least squares best fit
for an incoﬁplete function is generally a much harder task than finding

the least squares best £fit of a complete function,
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ITI., LOGIC WITH TERNARY VARTABLES

A, Polynomials Representing Ternafy Devices

This section presents representations of functibns of ternary
variables in terms of real polynomials, Funection tables that either
represent or could represent ternary devices are presented énd the
corresppnding real polynomial representations are given,

The first types of ternary devices considered are shown in Figures
1 and 2, The devices of these figures are single input devices. where the
input is represented as being a zj or tj variable, Elecfrically speaking,
this means that the input can be only one of three distinet electrical
states, The states might be three distinct voltage levels, three distinct
current levels, three distincet phases of some signal compared with a
reference signal, etec, Furthermore, the output can be only one of three
distinct electrical states, The function that tﬁe device performs on the
‘input is placed inside the boxes of Figures 1 and 2,

The three distinet electrical states may be associated with the
three values of the zj variable or with the three values of the t,.
variable, The output is some function of input z, variables and 1is
arithmetically one more than the output function in terms of the t.
variables,

MacKay and MacIntyre (7) present a ternary counter circuit, Their
basic ternary counter circuit is shown in Figure 3, The waveforms asso-~
ciated with the circuit are shown in Figure 4, The ternary counter may be
represented by real polynomial in the following manner, Let one input

state represent 0, 3, 6, 9, ee. input pulses, Let a second input state
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Z, t(Z))

o—t—sd §(2,)

Figure 1., Representation of a single»input ternary device in terms
of z variables

Pigure 2, Representation of a single-input ternary device in terms
of t varlables

R S S ¢

Figure 3. Ternary counter circuit
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T T T

VOLTAGE AT A

Figure 4, Waveforms of ternary counter circuit

Zy 1(2,,Z,) /
——— >
£(2,,Z,)
Z;

Figure 5, Representation of a two-input ternary device in terms
of 2z varlebles

ks i = - i i eyt < SopArii e+ b s - -—
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represent 1, 4, 7, 10, .., input pulses, Finally, let a third input
state represent 2,.5, 8, 11, ... input pulses, Associate an output
state with each of the three distinet voltage levels which appear at A
of Figure 3, Under these conventions, the device can be represented as
shown in Table 5 where the logical operation performed on the input is
termed forward step.

TEB1e 5. Function table for logical operation termed forward step

&1 % £(zy) 83 (%q)
0 -1 1 0
1 0 2 1
2 1 0 -1

The real polynomials representing the functions indicated by Table
5 are
.2 2
fl(zl) =-52. +572 +1 v (76)

and

= .22 1
g, (b)) ==5t" -2t +1 (1)

A ternary device which performs a loglcal operation termed backward
step on a single input can be represented as shown in Table 6,

Table 6, Function table for a logical operation termed backward step

2y y £,(z,) gx(ty)
0 -1 2 1
1 0 0 -1
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The real polynomials representing the functions indicated by Table 6

are
2
fg(zl) = % " - % Zq + 2 (78)
and
2
gy(t) =2 6,5 -2t -1 (79)

Next, consider the two-input ternafy device of Figure 5. These
devices have the same properties as those in Figures 1 and 2 except that
the devices operate on two inputs to produce the output,

As a first example, consider the circuit of Figure 6, Assume in
Figure 6 that the zener diode has a breakdown voltage of B and that the
inputs, Wl and WE’ take on only the voltage values 0, ,5B, and 1.5B,

The output voltage W3 correspeonding to the nine combinations of input
voltages is given in Table 7,

Table 7, Relation between Wl’ W,, and W5 of Figure 5

W, Wy W,
0 0 0

0 «>B 0

0 1.5B +5B
5B 0 0
«5B .5B .5B
.5B 1.5B «5B
1.53 0 | 0
1.5B .5B 5B

1.58 1.58 1,58
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Figure 7. Modulo adder with two parametrons

;-
o i|>li

Zo §

5 D{ ‘ 5(Z|,Z§)é

i

Figure 8, Circuit performing quasi-multiplication
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The circuit of Figure 6 ﬁay be represented logically with zj
variables in which a voltage value of zero is associated with the value of
zero of the Zj variable, a voltage value of ,5B is associated with the
value one of the zj variable, and a voltage value of 1,5B is associated
with the value of two of the zj variable, The logical relatiop in terms

of Zj variables of the circuit of Figure 6 is given in Table 8,

Table 8, Function table illustrating the logic of the circuit of Figure 5

Zp Zy f5(zl, z,)
0 0 0
0 1 0
0 2 1
1 0 0
1 1 1
1 2 1
2 0 o

o
}_l
[

The real polynomial representing the function in Table 8 is

=4 1,2 15 7.2, _5 2 3 _2 2
5 (2,25) = -2z 22 ¥ 17 2% "t 0% FE% %

(80)
Next, consider the parametrons presented in the articles by Schauer,
et al,, (15) and Hanson (3). Using the notation of the Schauer article,

the inputs to a parametron are represented in the following way:
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"0" - no oscillation

"1" -~ an oscillation in phase with a reference

">" _ an oscillation 180° out of phase with the reference

Complementation is defined as a phase inversion of a signal, The
complement of "O" is "O", The complement of "1" is "2", The complement
of "2" is "L",

The parametron is represented as a large circle with the threshold
of the parametron indicated by a Roman numeral inside the circle., If no
Roman numersal is present, the threshold is assumed to be one, A small
eircle is drawn where an input line meets a parametron wheﬁ the input is
to be complemented, The inputs are assumed to have weight one unless a
number by an input line indicates a different wéight.

The output of a parametron will be "O" unless the magnitude of the
number that results from subtracting the number of inputs with an in phase
oscillation from the number of inputs with a 180 degrees out of phase
oscillation equals or exceeds the parametron threshold. In the latter
case, the oubtput of the parametron is a "1" when there are more in phase
inputs than 180 degrees out of phase inputs and is a "2" when there are
more 180 degrees out of phase inputs than in phase inputs,

A two~input ternary device comprised of two parametrons which per-
forms the logical operation termed modulo addition is shown in Figure 7.
The function table associated with the device is shown in Table 9,

Table 9, Function table for a modulo adder

no

1 £),(215 2p)
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Table 9 (Continued)

L) 29 f)_l_(zl,zg)
0 1 1
0] 2 2
1 0 1
1 1 2
1 '2 0
2 0 2
e 1 0
2 2 1

The real polynomial representing the funcetion in Table 9 is

' 2 1 2 2
fu(zl’ZE) =z, + 2, + El Zi%y = Eé 2y Zp - %221222 + % 21222
(81)
Note that
flk (Zl’ 22) = f)+ (Zgi Zl) (82)

A twoeinput ternary device which performs a logical operation
termed quasi-muliiplication is shown in Figure 8, The volfage levels
associated with the z variables of Figure 8 are such that a zero repre-
sents the most positive voltage, a two represents the second most positive
voltage, and a one represents the least positive voltage or zero voltage,
The function table associated with the device of Figure 8 is given as

Table 10,
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Table 10, Function table for a logical operation termed quasi-multiplicae~

tion
Zy Zy £ (zl, Z,)
0 0 0
0 1 0
0 2 0
1 0 0
1 1 1
1 2 2
2 0] 0
2 1 2
2 2 2

The real polynomial representing the function in Table 10 is
1, 2 1 2

2 2
fS(Zl’ ) =3 Zi%y + 3 %y Zp + B EeZy - 1 7y 2y | (83)
Note that
fs (Zl’ 2‘2) = f5 (22.’ Zl) (8)"’)

Next, consider the threshold device of.Figure 9. The device has
two input currents, represented by zl and Zpe When the sum of the two
currents is great enough, the zener diode breaks down, One logical
operation that could be performed by the device of Figure 9 is repre-~
sented in Table 11 and is termed ternary half adder carry, The logical
operation is such that the output funetion, f6 (zl, zg), is zero except
that in those cases where the sum of the two inputs, z, and z,, is three

1 2

or more, the output function is a one,
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Figure 10. Goto pair circuit with two tunnel diodes
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Table 11, Function table for a logical operation termed ternary half
adder carry

Zp zy fe (zq, Z,)
0 0] 0
0 1 0
0 2 0
1 0 0
1 1 0]
1 2 1
2 0 0
2 1 1
2 2 1

The real polynomial representing the function in Table 11 is

2 2 2 2
fg (21525) = - TZ' 2% *% 2%y 751 7y %o % %y 2o (85)
Note that
f6 (Zl) 22) = f6 (Ze) Zl) (86)

Another logical operation that could be performed by the device
of Figure 9 is represented in Table 12, The output function, f7 (Zl’z2)?
of Figure 9 is zero except in the case where the sum of the two inputs,
z2q and Zgs is four, the output function is two,

Table 12, Function table representing a threshold device

2 f7(Zl, Ze)
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Table 12 (Continued)

Zo %2 £y (2152))
0 1 0
0 2 0
1 0 0
1 1 0
1 2 0
2 0 0
2 1 0
2 2 2

The real polynomial representing the function in Table 12 is
2

=1 i 1 2,12 2
£ (zl,zz) =3 %%, =3 %) By~ 3 I%y +t 3B % (87)
Note that
£, (zl, z,) = £, (255 z, ) (88)

Another example of a two~input ternary device iS<given.by the
"Goto~pair" circuit discussed in Sims, et al, (14) and shown in Figure 10,
The Goto=pair circuit comprised of two tunnel diodes can be used as a
majority logic device with three binary.inputs. If two of the binary
inputs are summed to produce one terngry input, the circuit of Figﬁre
10 results, Table 13 shows the logic associated with the circuit of

Figure 10,
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Table 15, Function table representing the logic associated with the
circuit of Figure 10

Zo Z1 tg (21, 2)
0 0 0
0 1 0
0 2 1
1 0 0
1 1 1
1 2 1

One real polYnomial representation for the incomplete function of
Table 13 is

g (zl,zg) = -3 z, + %‘ZI? + 27,2, - 2,77, (89)

Lowenschuss (6) demonstrates a device made from two Rutz (11)
transistors which is illustrated in Figure 11 and is a two-input ternary
device, The logic éssociated with this-device is given in Table 1k,

Table 14, Function table representing the logic associated with the
circuit of Figure 11

Zp Zq f9 (zl, 22) 10 (zl, z2)
0] 0 0] 0
0 1 1 0]
0 2 0 2
1 0 1 0
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Figure 11. Ternary device with two Rutz transistors
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Figure 12, Gating device
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Teble 14 (Continued)

Z Zq £y (Zl’ Z,) 15 (zl, z,)
1 2 2 1
2 0 0 2
2 1 2 1
2 2 2 2

The real polynomials representing the functions in Table 1k are

_ 2 2 19 2 e
f9 (Zl’ 22) = Ezl + 222 =2y = 2y =355 2% 521 Z, +5z.lz2

2 1
5 2 2
"3 % % . (90)
and
B 2. 2 .19 2 2
flO(Zl’ZE) = wZy = By kB F 2y + 552 Zy = 53y 7y = 5Zy%,
5 2 2
+ E'Zl 22 (91)
Note that
fg (Zl’ 22) = f9 (ZE, Zl) (92)
and
f10(210%) = T30 (20 7)) (93)

Finally, consider the two-input ternary device of Figure 12,
In the circuit of Figure 12, if zy is a one or a twa, the emitter-base
diode of the transistor is biased off, the collector current is zero, and
the output, fll (zl,ze), is the same as Zye If z, is a zero, the transistor
is biased on and the design parameters of the circuit can cause the output

to be essentially zero, Teble 15 shows the logic associated with the
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cirecuit of Figure 11 which may be regarded as a gating device,

Table 15, Function table for a gating device

“1 £11 (215 2p)
0 0
1 %5
2 Z5

The real polynomial representing the function of Table 15 is

11 (219 2) = Gz - b)) g . (9k)

A full ternary adder is an example of a thre¢~iﬁput ternary device,
Designs for full ternary adders utilizing parametrons are given in
Schauer (13) and Hanson (3). The logic associated with a full ternary
adder is given in Table 16 where 15 (Zl’ zg) is the "sum" aésociated with
a full ternary adder and le (zl, 22) is tﬁe "earpry" associated withva

full ternary adder,

Table 16, Function table representing a full ternary adder

Z Zg z, 15 (Zl’ Zos z5) £ (Zl’ Zps 23)
0 0 0 0 0]
0] 0 1 1 0
0 o) 2 2 0
0 1 0 1 0
¢ 1 1 2 0
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Table 16 (Continued)

Z5 Zgy il 5 (295 25, 23) £ (25 2o, z5)
0 2 o) 2 0
0 2 1 0 1
0 2 2 1 1
1 0 0 1 0]
1 0 1 2 o)
L 0 2 0 1
1 1 0 2 0
1 1 1 0 1
1 1 2 1 1
1 e 0 0 1
1 2 1 1 1
1 2 2 2 1
2 0 o) 2 0
2 0 1 0 1
2 0 2 1 1
2 1 0 0 1
2 1 1 1 1
2 1 2 2 1
2 2 0 1 1
2 2 1 2 1
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The real polynomials representing the functions of Table 16 are

21
£15 (zl,zz,z5) =2+ 2y + 25 b (2,2, + 225 + Zolx

15 2

2 2 2
-7 (zl Z, + zlgz5 2Ty k By Xp o+ 225 4 22252)
2 2 2 2 2 2
- _gIZ:LZEZB + % (2, Z22 + 2 Bz By 23 )
+ -]%2 (212 ZoZz + 22 225 + 2122252)
6 2 2 2 2 27 2
(z zQ Zy + By Bpg + ByZy g )+ gz 25
T3 (zl,zg, = - 11' (z Zp ¥ 215 + Zpls
+E(212+le +222+222 + Z.% 22)
3 172 23 1 5 3
¢ 2 2 2
+ %— ZyZpls % (zl 22 + 21225 Tz, 2y )
= (zl ZoZz + 7 22223 + zlz2z52)
2 2.2, 9 2
(zl25 zz2z5-)-z125) 821227‘5
Note that

1o (Zl,zz,ZB) = £ (zl,z5,zg)
=£, (25, Zl’ZB)
12 (2052552;)
= £15 (255752))
= £, (ZB,ZE,ZJ_)
le(Zl’ZQ’ZB) 13 (Zl’ZB’ZE)

= I3 (25521, 25)

(95)

(96)

(o7)
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13 (ZE’ZB’ZI)
= f15 (2 ,Zl,ze)
= le (ZB’ZE’Z:L) (98)

B, Real Polynomial Identifies
This section presents real poiynomial identities which will be used
in proving the logical relations of the next section, The first identity,
which may be developed from a function table, is
n-1l

2.0 = (2

J - 1) zj2 S o) P (99)

dJ
where Zj is a three~valued variable and n is an integer greater thaﬁ
zero, The relation is easily proved by substitution of the values which
zj can take on, namely, O, 1, and 2, on each side of Equation 99 and seeing
that an identity results,
The next identity is

2n-1
. =t 1
3 3 (100)

t
where n is ah integer greater than zero, The identity is easily proved
by substitution of the values which tj can take on, namely -1, O, and 1,
on each side of Equation 100 and seeing that an idehtity results,

The last identity presented is

87 = £ (101)
where n is an integer greater than zero, This identity also is easily
proved by substitution of the values which t. can take on in each side of
Equation 101 and seeing that an identity results,

As an example of the use of the identities, consider the square of

Equation 82



[fu (Zl’ZE)]g =[zy + 2, + %l Z%5 = %2 21222 - %2 Z1Z,
+ 7 ,512 2 P | (102)

It can be seen that if the squaring operation is carried out on the
right-hand side of Equation 102 the resulting polynomial will contain
terms containing Zq to the third and fourth powers, The third and fourth
powers of zq and z, may be substituted for with expressions containing
only first and second powers by use of Equation 99, The actual equation

that results from use of the foregoing procedures is

> 2 6 2
(£, (zl,zg)]— =z," + 222 + —% Z,%, - %2 7 %

>
- 7319' Z1%y * i_l Z12222 . (103)

The form of Equation 103 could have beén deduced in light of Equations
99 and 102 as |

(£, (21’22)]2 = le + 222 + Az z, + 321222 + 021222 + Dzlezé2 (1ok)
where A, B, C, and D are undetermined constant coefficients, Substitution
from rows of a function table representing the left-hand side of Equa-
tion 104 produces a set of linear equations which may be solved for A, B,
C, and D, It is noted that if the coefficients of the first two terms
of Equation 10k are not deduced as being unity, they may be represented
with undetermined coefficients and solved for the same manner as A, B,
C, and D,

Applying the procedures discussed in the foregoing, it may also be
shown that

2 2 2 2
[f5(zl,22)]2 = =3ZyZy + 32, 2y + 32.%, = 22, 2,° . (105)
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Figure 15. .Schematic fepresentation of a loglcal relation
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Figure 14, Schematic representation of a full ternary adder
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C. Proofs of Logical Relations
This section will present some proofs of logical relatioﬁs in terms

of the real polynomials of the preceding section, The first proof will
be that .

| £, (zl) = £ (fl(zl)) . (106)
The logical relation indicated by Equation 106 can be represented
schematically as shown in Figure 13. The proof of Equation 106 proceeds
by working with the right-~hand side and using Equations 76, .78, and 99.

£ (£,(2)))

i % [fl(zl) ]2 + g [fl(zl)] + 1

5
1 *t%

2 2
= - % [% 2, - 552 v § 2+ 5zq + 1]~ %2 z1?+ ﬂé zZq + % +

_ 27 Lk, 4 3 69 2 _ 2
=-g 2% tpt -g % ~fEte
2 6 2
= - 81 (721 - 62z9) + T (521 - 22,) - 82 z{ - % zZq + 2
= % 21? - %-zl + 2
\
= £, (z,) (1o7)
Working with the tl variable, the relation equivalent to Equation
106 given by‘

can be proved more easily, Working with the rightehand side of Equation
118 and making use of Equations 77, 79, 100, and 101 yields
gl(tl (tl)) = -

R 1 2 112 +°2_1
_--é-[——g-'tl-gtl'*'l] —2[-'2"tl 2'bl+l]+l

N o



=-%[%tll‘-fgtf-%l-tle-tl+1]+%tlg+%tl-%+l
='%1t14'%t13+%2t12+1%" t -1

=-%7.t12-% tl+%3t12+17; -1

=-z—tl2-%tl-l

=g, (t) . (109)

Néext, we shall prove the following relations,

flE (Zl’ Zg) 25) = f)_;_ (fj_‘_ (Zl:za)) 25) ) (llO)

and

£ (Zl’ZE’ZS) = f¢ (zl,zg) + fg (fh(zl,ze),z5) (111)

The logical relations of Equations 110 and 111 can be represented
schematically as shown in Figure 1k,

Figure 14 may be conéidered as representing what is termed a full
ternary adder, The inputs z, and z, could represent the "0ld carry"
that resulted from adding the next less significant digits of the two
numbers, Then f12 (21,22,25) is the digit of the same significance as zy
or Z, in the number of base three representing the sum of the two nunbers
being added, and le (21,22,23) is the "new carry" that is added to the
next more significant digits in the two numbers being added,

The proof of Equeation 110 is found by working with the righte—hand
side and employing Equations 82, 95, 99, and 103,

), (fu (Zl:zg) :25)

2 2
=), (ZI{ZE) + 2yt Ei Z fh(zl’zg)" %2 23 fh(zl’ZE)
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- %2 ZE[fh (Zl’ZE)]Z + % 252 [f4 (Zl;ze)]g
=25 + (L + i—l Zy - %—5- 252) ) (21:22)‘*‘(" %‘E Zz T 23 )

[f)-F (Zl} 22) ]2

T (2 + 72+—l %5 " P 25 )z ﬂi 23 - 72 2%y
- 7];_5 Z12Z2 + % 212Z22)+(- % 12 + z22 + gé 2,2,
- %ﬁ 21222 - i—g 1 22 + % 212222)
R R S L

_15z22—15222—15222 lsZZ Z
T %1% " T %23 "k “1% T “2% T125

+ % z12222 + 79: 212252 + % 222252 + %5- zlezéz5 + L%E zlz2225
135 63 2 2 63 2 2 63 2 2
T TgE %% " F %y %p %3 T F P %%z T F 2% %3
27 , 2,2, 2
tE %%
= f12 (Zl’ZE’ZB) . A (112)

Similarly, the proof of Equation 111 is found by working with the

right-side and employing Equations 82, 85, 98, and 103,

fe (zl,z + £ (fu (z1,2,) z5)

_ LT 5,,2.5,28 _3.,2.2 1
=m Pt R tFI % m T 5 -2y (2,2)

+ ']?: Z52 fu <Zl,22) + % 2'5 [f)-P (Zl)zg) ]2 = ]5: ZBQ[fM(ZlJZE)]Z
=‘¥IZ 2 *TSIZZE‘“JEIZlEZE“%ZlEzzE* ("77125"'751232)
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* (% 3 = % 25 ) (2" + 222 + %2 Z1%p = %2 Z1.222 - %221222
21 2 2
R

N
o
n

2 5 2 5 2 89
+TPZ1Z5+EZ:LZ5 +HZ225+'8——Z12225-E21Z2
2

2 2 3 2 2 45 2 45 2 L5 2
"L %1% TT %% TF % TPz m g Ey%p %3 T gTE%%

2 2 2 2.2 9 2 2 2

21 2 21 21
-i-g—ZlZEZB-i-B-—ZlZEZ5 '!'8'—ZlZ2Z3 ~8-le225

= T35 (Zl,zz,ZB) o (113)

D, ZImplementation of Product Terms

The polynomials of the preceding sections have terms containing
products of the zj variables., If these products could be implemented,
then a weighted sum of the products thus formed would implement the
polynomials directly, The weighted sum might theoretically be done in
analog fashion, A great nunber of possible implementations for fo;ming
these products could be suggested, This sectlon suggests implementation
for forming the product of two Zj variables and three ZJ variables,

Figure 15 shows a schematic representation of implementation for
forming the product of two zj variables, z) and z,. The summing
junetion of Figure 15 might be implemented, for example, by analog
summation of voltages or currents employing weighting resistors. The

logical relation indicated by Figure 15 is that
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Czl . > f5(Z|,Zz) + | Z' 22
Z, t5(2y,2;) ;i +
O- . >

(2,25
£02,,Z,) ‘

Figure 15, Schematic representation for implementation of
zlz2 product
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2,2, = £ (2, 2,) + £ (21, 2,) . (11k)

Equation 11k can be proved by working with the right~hand side and meking

use of Equations 83 and 87,

£o (20, z,) + £ (2, 2,)

=1 1,2, 1. .2 _ 1.2 2 1 12
=2 2q%p + 3 2 Zp £ 3 212 2292, t2 2425 = 7 Zq Zg
2 2 2
-3 %1%, &3 2 2, = 2%, (115)

Figure 16 éhows.a schematic representation of implementation for

forming the product of three Zj variables, %15 Zpo and z,, The logical

3
relation indicated by Figure 16 is that

Zq2p23 = 5 (f5 <Zl’ z5), 25) + £ (25, £ (Zl’ Z5))
+ £, (25, f7(zl, 25)) + 19 (2, o (205 25)) & (116)
Equation 116 can be proved by working with the right-hand side and making
use of Equations 83, 87, 9%, and 105,

f5 (f5 (Zl’ 22): 25) + fll (25: f7 {Zl, Zg)) + fll (Zg: f7 (21323))

+ fll (zl, f7 (22, z5))

(——2— 2'3 + %— 252) f5 (Zl) 22) + (% Z5 = % Z52) [f5 (ZlJ 22) ]2

2 ' 2
+ (% Zg - %~z5 ) £ (zl, Z,) + (% Z, - % Z, ) £ (zl, 25)
2
+ (% z) - % z,") f7 (22, 25)
_(L ., . 1.2y 1 1.2 1. .2 1 22
= (3 2z + 3 Iy ) (3 2%y + 3 3y Zy 3 By%, 2 2y Zp )
i, _1.,° 2 2 1 2 _2
+ (3 25 - 3 23 (-3 2125 + 3 2,72, + 3 2,2, 52 Zp )
2 2 2 2 2
+ (% Z5 - 5 7 ) (% 2%, - % 2, %o - 3 2.2, + 3 2" 7 )
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Figure 16. Schematic representation for implementation of 212225 product
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IV, CODES AND FUNCTIONAL DECODING

A, Weighted Codes

A weighted code of two three-valued z variables is illustrated in

Table 17.

Table 17, Function table for a weighted code

Z2 Zl fl]_ (Zl, 22)
0 0 o)
0 1 1
0 2 2

'_I
o
= W

1 1

1 2 5
2 0 6
2 1 7
2 2 8

The real polynomial representing the function of Table 17 is

£ (zl, Z,) = 2, +3 2, . (118)

More generally, a weighted code could be defined as being linear in
the multi-valued variables and as belng represented by the equation

f (xl, Xpy eees Xg) =D DXy DXk wee + DX (119)
where bo, bl’ ceey bn are constants,

A single binary device has two well-defined states. A decimal

device can be formed from four binary devices, since sixteen different
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conditions can be represented by the states of the four binary devices.
Ten of the sixbteen different conditions can be usgﬂlto represent the
integers 0, 1, 2, ..., 9 with the other six conditions not used or
defined, If a decimal device were formed from two binary devices and
one ternary device, there would be twelve different conditions, Ten of
the twelve different conditions can be used to represent the integers
0, 1, 2, ..., 9 with only the other two con?itions not used cor defined.
Table 18 represents a weighted code which could represent a deéimal

device, In Table 18, Zq and z, are two-valued variables and z, is a

3

three-valued variable.‘

Table 18, Function table for a weighted code associated with a decimal

device
Zs 2 zy f1s (Zl’zz’ZB)
0 0 0 0
0 0 1 L
0 1 0 2
0 1 1 3
1 0 0 L

-
(@]
=

i

o
=
o

[0)

o
(@]
(@]
\O w
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The real polynomial representing the function of Table 18 is

£1s (zl, Zgs 25) =2z f‘EZE + MZB . ' (120)

B. Non-weighted Codes

Just as weighted codes are useful, so are non-weighted codes,
The real polynomial representing a non-weighted code is not linear in the
multi-valued variables, Table 19 gives an example of a non-weighted
code which is termed a reflected ternary code., This code possesses
the property that only one z variable changes value for any two adjacent
rows of the function table, Reflected codes find use in connection with
analog-to-digital conversion devices,

Table 19, Function table for a reflected ternary code

Zo %1 f16 (295 2)
0 0 0
0 1 1
0 2 2
1 2 3
1 1 I

[}
(@)
\n

2 0 6
2 1 T
2 2 8

The real polynomial representing the function of Table 19 is

2 2
fi¢ (Zl’ zg) =z, + T2y - 2 2, - lez2 + 2292, . (121)
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C. Funcﬁional Decoding

Real polynomials are useful in describing the decoding of a set of
multi-valued variables into a function of the variables. Such deserip-
tions find application in digital-to-analog conversion devices and can
also be useful in devices which transform a digital input to a function-
ally related digital output.

As aé example of functional decoding consider the "square"” function
of Table 20,

Table 20. Function table for a square function

%o % f17 (21, 25)
0 0 0
0 1 1
0 2 i
1 0 9
1 1 | 16
1 2 25
2 0 36
2 1 49
2 2 6L

The real polynomial representing the function of Table 20 is
2 2
= 22
£17 (zl, z,) =2, + 9z + 6zlz2 . (122)
D, Partitioning

For incomplete funétions, partitioning the function table is a

useful technique in finding & real polynomial representation, As
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previously noted, an incomplete function has an infinite number of real
polynomial representations. Consider the square function of Table 21,

Table 21, Incomplete three variable square function

Zg Z, il f.g (Zl’ Zps z5)
0 0 0 0
0 0 1 1
0 0 2 N
0 1 0 9
o 1 1 : 16
0 1 2 25
0 2 -, 0 36
0 2 1 49
0 2 > | 6l
1 0 0 8
1 0 1 100
1 0 2 ' '121

The first nine rows of Table 21 have z, constant, The real

3
polynomiél which describes the first nine rows of Table 21 is independ-
ent of 25 and is fl? (Zl’ 22) given previously in Equation 122, The
last three rows of Table 18 have Zg and 25 constant, The real poly-
nomial which describes the last three rows of Table 18 is independent
of Z, and 25 and is given by
fl9 (zl) =.81 + 18 z, + ZI? . _ (123)

A real polymomial that describes the incomplete function of Table 18
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can be deduced as
fig (zl, 2o z3) = (1 - z5) £17 (Zl’ o) + 75 fl9 (zl)

=8lz, +2z.°+ 9z e

3 1 + 6 z.z., + 18 z,2

2
o 125 123 = 9 Zp %3 * 6 2 %p23
(124)
E, ©Segmented Approximation

Thevuse of different polynomials to describe different parts of a
given curve is termed segmented approximation. Partitioning a function
table is a useful method for finding the segmented approximetion of a
given curve, It has been seen that a least squares best fitting approxi-
mation of a complete function is relatively easier to find tHan a least
squares best fitting approximation of an incomplete fﬁnction. The function
table of an incomplete function can often be partitioned such that some
of the partitions can be considered complete ﬁunctions.

For example, the first nine rows of the incomplete function of
Table 21 can be considered a complete function of the variables z4 and Zoe
A least squares best fitting epproximation to the function describing
the first nine rows may be found and may be used in the real polynomial
describing all twelve rows according to the méthods of the previous
section,

In general, functions which are the least squares best fitting
approximations to partitions of the function table may be found. These
functions can then be combined to represent the entire function table
according to the methods of the preceding section. In addition, it may
be desirable to define undefined points of an incomplete function in order

to simplify the finding of a good approximation to the funection,
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F, Interpolation
When a function of multi-valued discrete variables is a representa-
tion of a continuous function, interpolation is poésible. For example,
consider the square function of Table 20, The real polynomial represent-

ing the function is, as previously given,

2 2 :
flT (Zl’JZE) =z," + 91z, + 6 2.%5 . (125)

Assume that Z, is held constant at one of its three allowed values
and the varia'ble,zl is allowed to vary continuously between zero and two J
rather than taking on its three allowed values only., With Zg constant,
fl7 (zl, 22) is a parabolic function in Zq. As z varies continuously
from zero to two, a continuous parabolic curve is described running
through the three points where fl7 (zl, 22) was defined at Zq equals
zero, one, and two., The continuous square function which fl7(zl’ 22)
is representing also varies continuously between the defined points where
z4 equals zerc, one, and two., When well-behaved continuous functions

are represented, interpolation can be used to give "finer grained"

functions. This can be accomplished by replacing zq with

2y =4 £y, (299, 295) =% (299 + 3 23p) (126)

which places nine points on the continuous parabolic curve previously

described rather than only three which zl itself would place on the curve,
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V. CONCLUSIONS AND SUMMARY

The dissertation shows how to develop a real polynomial representation
of a function of multi-valued variables from a function table. The
least squares best-fitting approximation to a function is also discussed
in terms of real polynomials.

Real polynomials are then presented which could represent ternary
devices, The logic of networks containing, for the most part, ternary
devices is demonstrated, Direct implementation of product terms of the
real polynomials is considered and demonstrated for two special cases.

Weighted and non-weighted codes are presented, In particular, a
welghted code with a mixture of two-valued and threé-valued variables is
presented,

Real polynomials which could be used in functional decoding are
presented, Functional decoding finds use in digital-to-analog conversion
devices and possibly in converting a digital input to a corresponding
digital cutput. Segmented épproximation of functions of multi-valued
Qariables is discussed. Also discussed is interpolation for real

polynomials which represent continuous functions,
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