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I. INTRODUCTION 

This dissertation develops real polynomial representations of 

functions of multi-valued discrete variables. A multi-valued discrete 

variable is one which can take on only a finite number of discrete values. 

Application of the real polynomials is made to networks Containing, for 

the most part, ternary devices. 

One of the advantages of the real polynomials when analyzing networks 

with multi-valued logic is that they follow the usual rules of algebraic 

manipulation without special conventions. In addition, they are useful 

for approximation in the least squares best fit sense, are useful in 

describing weighted and non-weighted codes, are useful in describing 

functional decoding, and are useful in interpolation. 

Other types of algebras with special conventions have been developed 

(6). A modular algebra has been discussed by.Bernstein (l). Algebras 

referred to as Post algebras in the literature were initiated by Post (8). 

Hanson ($) presents an algebra for analyzing a ternary device. 

Binary devices are widely used in the engineering art. Boolean 

' algebra has been well developed for handling networks of binary devices. 

Recently, Sander (12) has developed a real polynomial algebra for handling 

the logic associated with binary devices. 

Though not as widely used, devices exhibiting more than two discrete 

states do exist (2, 4, 6, 7, 11, 13). Perhaps, with the inventive genius 

of engineers and scientists at work, more such devices will be invented. 

The state of a multi-state device may be different voltage levels, differ

ent current levels, different phases of some signal with respect to a 
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reference signal, or a combination of the preceding. The real polyno

mials developed in this dissertation are useful in describing the logic 

associated with multi-state devices. 
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II. REAL POLYNOMIALS OF p-ARY VARIABLES 

A. Arbitrary Functions 

Definition 1: 

A p-valued variable is a variable x̂  that can take on only one p 

finite real values x̂ .1, x̂ , ..., x̂ P where p is an integer greater than 

zero and where x.m  ̂x.n when m ̂  n. 

Definition 2 : 

A complete function of n multi-valued discrete variables where each 

variable is a p-valued variable, but p is not necessarily the same for 

each variable, is a function defined for all possible combinations of 

values of the n variables. An incomplete function is a function of 

multi-valued discrete variables that is not complete. 

Observe that a complete function of two two-valued variables and one 

three-valued variable must be defined for the twelve possible combinations 

of the three variables. 

Any function of multi-valued discrete variables can be represented 

by a finite table listing the possible combinations of values that the 

variables x̂  take on and the value of the function for each point. 

An example of such a table for a complete function of two two-valued 

variables and one three-valued variable is shown in Table 1. 

Table 1. General function of two two-valued variables and one three-
valued variable 

x2 Xx f(x1, Xg, Xj) 

1 1 1  
=3 %2 =1 ?1 
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Table 1 (Continued) 

*3 2̂ X1 f(x1, Xg, x5) 

1 1 
2̂ 

y2 

l 
*3 

2 
X2 X11 ' y3 

l 
*3 Xl2 y4 OJ 

X2X X1X y5 
2 
5 

1 
X2 Xl2 y6 

2 
*3 

2 
X2 y7 

X52 Xl2 y8 

*3 X21 X1X y9 

Y 
1 
2̂ Xl2 yio 
2 

X2 yn 
2 
2̂ Xl2 y12 

Definition 3 : 

A set of p-ary variables is a set x̂ , ..., x of p-valued 

1 1 --2 - - % = ... = x 
n 

variables such that x̂  = x̂  = ... = xq , x̂  = x? = ... = x 

x P _ x P - - x P 
X1 " x2 " " n * 

Definition 4: 

1 2 
The variable z . is a p-valued variable such that z . = 0, z = 1, 

J u J 

z 5 = 2, ..., z P = p - 1. 
J u 

It follows directly that a set of variables ẑ  is a set of p-ary 

variables. 

Definition 5: 

The variable v. is a two-valued variable such that v= -1 and 
<j J 



www.manaraa.com

2 
Vj = + 1. 

It follows directly that a set of variables v̂  is a set of binary 

variables. 

Definition 6: 

1 P The variable t. is a' three-valued variable such that t. = -1, t. =0, 
J 3 3 

and t/̂ = + 1. 

It follows directly that a set of variables t̂  is a set of 

ternary variables. 

Clearly, the following relation exists between a three-valued 

variable z. and the t. variable 
0 J 

z â  - 1  =  V  ^  
A function of two three-valued z variables is shown in Table 2. 

Table 2. General function of two three-valued z variables 

Z1 Z2 f(v Z2̂  

0 0 yl 

0 1 y2 

0 2 
y3 

1 0 y4 

1 1 
y5 

1 2 y6 

2 0 
y7 

2 1 y8 

2 2 
y9 
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We now proceed with a theorem which allows us to express functions 

"by means of a real polynomial in z.. directly. 

Theorem 1: Given any complete function f of two three-valued 

variables, ẑ  and z2, such as shown in Table 2, this function can be 

expressed as the following real polynomial. 

F(V Z
2) = (1-Z2H2-Z2)(1-Z1)(2-Z1)^ 

+ y2 (1-Z2)(2-Z2)(zi)(2-z1)I 

+ y5 (l-z2)(2-z2)(z1)(z1-l)| 

+yif (z2) (2-Zg) (l-zL) (2-z1)i 

+ y5 (Z2)(2-Z£)(a1)(2-Z1)  ̂

+ yg (z2)(2-z2)(z1)(z1-l)i 

+ y7 (z2)(z2-l)(l-z1)(2-z1)̂  

+ y8 (Z2)(Z2-I)(Z1)(2-Z1)| 

+ y5 

Proof: Substitution of the values of ẑ  and Zg from the first row 

of the function table, Table 2, yields 

f(0,0) = y]_(l) + y2(0) + y5(0) + ŷ O) + ŷ O) + ŷ (0) + ŷ (0) 

+ y8(0) + ŷ (o) = y1 (3) 

Similarly, substitution of the values of ẑ  and Zg from the K-th row of 

the function table gives 

f(z-jj£.> Zgg) — y-̂ (o) + ... + ŷ -_-̂ (o) + ŷ (i) 

+ yK+1(°) + ... + y9(o) = yK (4) 

•Thus, the polynomial of Equation 2 has been shown to satisfy the require

ments of the function table. 

Theorem 1 is easily generalized to functions of multi-valued 

discrete variables. The procedure is to write the polynomial in the form 
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f(xL, x2, xn) = y1h1 + ygh2 + y + ... (5) 

where substitution of the values of the set x̂  from the K-th row of the 

function table causes ĥ  = 1 and = 0 where j £ K. In order to 

illustrate the concept further, consider the function of'Table 1. This 

function may be represented by the following polynomial. 

(%T*12) 

f(Xl' ̂  ̂ = yi 

(Xi-Xi1) (x2-x22) (x̂ -Xj2) (̂ -̂ 5) 

(X̂ -Xi1) (x21-x22) (x̂ 1-̂ 2) (̂ -x/) 
+ y2 2 

+ y3 

+ y5 

(x1-x12)(x2-x21) (̂ -̂ 2) (x3~x35 ) 

(x̂ -xj2) (X22-X21) (X̂ 1-̂ 2) (x̂ 1-̂ 5 ) 

(̂ 1-Xi1)(Xg-Xg1)(x̂ -x̂ 2) 

 ̂(x12-x11)(x22-x21̂ x31"x52̂ (;>!3"x35) 

(Vxl2) (x2"x22̂  (>3"x51) 

(x̂ -x̂ ) (Xĝ -Xg2) (x̂ 2-̂ 1) (x̂ -x̂ 5) 

(Xi-Xi1) (x2-x22) (x3-2C35) 

6 (xl2-xi1)(x21-x22)(x52-x51)(x52-x55) 

(xi~xi2)(Xg-Xg1)(x5-x51)(xyx̂ 5) 

" 7 (x11-x12) (Xg2̂ 1) (x̂ -x̂ 1) (x̂ -x̂ 5) 

(xl~xl̂ ) (;x2~x21) (x̂ -X̂ 1) (X̂ -X̂ 5) 

^ 

(xrxi2) (x2"xg2) (x3_x31) (̂ -̂ 2) 

9 (x̂ -x̂  ) (x21-x22 ) (x̂ 5 -x51) (x̂ 5 -x51) 
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(Xi-Xi1) (x2-x22) (̂ -x̂ 2) 

10 tel2"*]1) (x21_x22̂  

(Xx-Xi2) (Xg-Xg1) (x5-x51) OyXj2) 

11 (xi1-xi2) ĉ 2-̂ 1) Ĉ 5-̂ 1) (x/-̂ 2) 

(Xi-Xi1)(x2-x2̂ )(x̂ -x̂ 1)(x5-x52) 

12 (x12-x11)(x22-x21)(x55-x51)(x55-x52) (6) 

Substitution of values of'x̂ , Xg, and from the K-th row of Table 1 

yields 

f(xiK, x̂ , ̂ K) = yK (T) 

which shows the correctness of the Polynomial 6. 

B. Change of Variables 

Theorem 2: If x. is a p-valued variable and r. is another p-valued 
J J 

variable, the following relation exists between x. and r.: 

" "V + Tfb- Cr32"r3X + (r/"r31)"(ro2"ro1) + 

### * # 
(r̂ -r̂ 1)- (r.2-̂ 1)) + ...))) (8) 

The proof follows directly since substitution of x and x.̂  in Equation 8 
J J 

K 
gives-r. = r. . 

J J 

If x. is a two-valued variable and r. is another two-valued variable, 
J 3 

Equation 8 becomes 

, x.-x , 

'3 ̂ 1 + 7àfï C'jS1) te) 
j j 
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If Xj is a 3-valued variable and r̂  is another 3-valued variable, 

Equation 8 "becomes 
1 2 2 1 x.-x. 0 n x.-x. x.-x. 

1 , û j (r̂ -r,1 + JUL., (-W (r5-r>)-(ra-rl))) 
rJ =rj + ^ x'-x2 V'-x.1 VJ 'a '"vj "J 

J J • d J J j  ̂20 j 

It is seen that the relation (8) is not, in general, linear "between 

x. and r .. 

G0 Orthogonal Variables 

Consider the function of Table 2 which has the polynomial representa

tion given by Equation 2. Examination of Equation 2 shows that another 

form of the function is 

2 2 2 2 f(z3/ z2) = a1a0+ a2zi + eyZ2 + al̂ z1 + â ẑ  + BgẐ  

+ a $ z l z ^  C11) 

where the a's are constants determined by the y's of Table 2 and â  is 

not zero. Equation 1 shows that a linear relationship exists between the 

three-valued ẑ  and t̂  so that f(ẑ ,ẑ ) may be expressed as a function 

g(t̂ , t ) as follows. 

z2) = g(tp t.) 

= KiKo+ W W ViV K5ti2+ Va2- ViV ViV 
+ YiV - t12) 

where the K's are constants determined by the y's of Table 2 and KQ is 

not zero. 

There are nine terms in either Equation 11 or 12. If we let HL 

d enote the i-th term of either Equation 11 or 12 (i=l, 2,...,9), neither 

Equation 11 nor 12 possesses the orthogonal property that 
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2 miKmjK " ° 1 ̂  j 
K=1 

where K is an index on the rows of Table 2 and is the i-th term of 

either Equation 11 or 12 evaluated for the values of the variables from 

the K-th row of Table 2. 

It- is possible to generate c nine term polynomial in the variables 

t. (or z.) representing g(t,, t0) whose terms satisfy the orthogonal 
J J -L <-

relation of Equation 13. The terms of Equation 12 with the constants . 

2 2 2 
K± (i = 1, 2, ..., 9) ignored are Kg, t±, tg, t̂  , t̂  , tit2' tl \} 

2 2 2 
t̂ tg and t̂  tg where is not zero. 

Let 

0.-L = Kq (Ik) 

Let 

gg = + t^ (15) 

where d̂  is a constant. 

If q̂  and q̂  are to be orthogonal, then we must choose the constant 

dpi of Equation 15 in such a way that 

2 Vac = 0 (l6) 

K=1 

Then, substituting Equation 15 in Equation l6 gives 

9 9 

d2l ̂ UC + S = 0 
K=1 K=1 

9d2lK0 + K0 2 tlK = ° 
K=1 

d21 = o (17) 
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Set a21 = 0. This causes q and q^ to "be orthogonal. 

Uexrt, let 

a3 = d3lql + d32q2 + *2 (l8) 

•where d̂  and d̂ 2 are constants. 

If q̂  and q̂  are to be orthogonal, then 

9 

^ q3K qH = 0 * 

Equation 19 may be used to find since q̂  and q̂  are knovn to be 

orthogonal. Substituting Equation 18 in Equation 19 gives d = 0. Set 

d̂  = 0. This causes q̂  and q̂  to be orthogonal. 

Similarly, set d̂ 2 = 0 since this causes 

9 • 
2 <̂ 3Kq2K = 0 (20) 
rL=± 

and q̂  and q̂  are then orthogonal. 

The process may be continued by letting 

^ = d4iqi + âJ+2q2 + dU3q3 + tl2 (21) 

where d̂ , d̂ 2, and d̂  are constants. 

Find d̂  from 

9 
S " 0 <22> 
K=1 

Find d̂ 2 from 

2 V2K " ° t2?» 
K=1 

Find d̂  from 

2 44K%K •0 <24> 
K=1 

Then q̂  will be orthogonal to q̂ , to q̂ , and to q̂ . 
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h 2 - I  

The process thus far indicated is continued to find q̂ , q̂ , q,.,, 

qg, q̂ . The results are 

= %o (14) 

 ̂= \ (25) 

= tg (26) 

(27) 

= V - F (28) 

I5 = *2*2 (29) 

 ̂= (t̂  - §) tg (30) 

S8 = ti (t% _ %) (31) 

 ̂= (t̂  -§)(tg2 -§) (32) 

where, for i = 1, 2, ..., 9, and j = 1, 2, ..., 9, 

s VjK - 0 3̂ (53) 

Next, let, for i =1, 2, ..., 9, 

Pi = , . (34) 

,/E^7 

Then, for i = 1, 2, ..., 9 and j = 1, 2, 9, 

9 
2 P,-Kpitc = 0 1 £ j (35) 

and 

K=1 ̂  

9 g ' . 
S PjLK = 1 . (36) 
K=1 

Equation 12 may be written as 
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g(ty tg) = + CgPg + + ĉ p̂  + cgpg + + cgpg + CgPp 

(37) 

where the c's are constants determined by the y's of Table 2. The follow

ing procedure may be used to find the c's. From Table 2, 

yK = C1P1K + C2P2K + C3P3K + C4P4K + C5P5K + c6p6K + C7P7K + C8P8K 

+ °9P9K (5̂ ) 

where K is an index on the rows of Table 2 and p̂  (i = 1, 2,.,., 9) is 

p̂  evaluated for the values of the variables from the K-th row of the 

function table. Then, multiplying Equation 38 by p̂  and summing over the 

rows of the function table yields 

9 9 9 

 ̂yK PiK = 2 S cmPnKPiK (39) 
K=1 m=l K=1 

Using Equations 34 and 35 gives 

Ci = 2 yK PiK * 
E=1 

At this point, a summary of the above ideas is in order. A function 

of n multi-valued variables may be written, As indicated in Theorem 1 

or as in Equation 6. This complete function may then be written in a 

form like that of Equation 11 or Equation 12. The terms of the latter 

form do not, in general, satisfy the orthogonality relation indicated by 

Equation 13. Using the procedures indicated from Equation 14 through 

Equation 24, orthogonal terms may be developed which are designated as 

Next employ Equation 34 to find p̂ . Then, if H is the number of 

rows of the function table defining the function and K is an index on 

the rows of the function table 
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H 

% piKPjK = 0 1 ̂  j 
K=1 

for i=l, 2, ..., N and j = 1, 2, ..., N. Also 

H 

2 piK̂  i- ĉ ) 
K=1 

The function f (x̂ , x̂ , ..., x̂ ) may then he expressed as 

T 

f (Xl, xg,..., xn), 2 v. e*3> 
m=l 

where T is the number of terms in the polynomial representing f(x̂ ,xg,... 

V-

Let y, denote the value of f (x., x„, ..., x ) for the values of the yk " " " "̂ "l' 2' n' 

variables from the Kth row of the function table. 

yK f xnK̂  

Then T 

yK ~ CmPmK m=l 

The c ' s may be found by multiplying Equation 45 by p̂ , summing over the 

N rows of the function table, and interchanging the order of the summation. 

N NT T N 

2 yKPiK 2 Z CmPmKPiK = 2 °m % PmKPiK  ̂
K=1 K=1 m=l m=l K=1 

Using Equations 4l and 4-2 gives 

N 

c 
l i 2j yKPiK 

K=1 

If the orthogonal are generated, the polynomial representing the 

function may be found by using Equations 43 and 4f. This may be more 
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convenient than using the method indicated "by Theorem 1 to find the 

polynomial. 

It is shown by Sander (12) that the variable v. of Definition 5 
3  

leads to a polynomial whose terms are orthogonal for a function of any 

number of two-valued variables. This makes v̂  of great convenience in 

dealing with functions of two-valued variables. As shown by Equation g, 

a linear relation exists between v. and any other two-valued variable x.„ 
J J 

The variable t̂  of Definition 6 is a useful three-valued variable 

since it does lead to simplifications in finding orthogonal terms of the 

p̂  type. Equation 1 shows that a linear relation exists between a three-

valued z. and t.. However, Equation 10 shows that a linear relationship 

does not, in general, exist between t̂  and any other three-valued variable 

Xj. If working with three-valued variables other than ẑ  or t̂  where 

no linear relation exists between the variables and z. or t., it is 
J J 

suggested that orthogonal terms of the p̂  type be generated in terms 

of the three-valued variables. This suggestion is extended to functions 

of multi-valued discrete variables. The suggestion is felt advantageous 

over working with z. (or t.) and making a nonlinear transformation back 

to the variables of interest. 

It is noted that a complete function of two two-valued z variables 

can be written as 

f(zv z2) = C]P̂  + CpPg + c5P5 + ĉ  (48) 

where the c's are constants and the p's, which satisfy Equations 4l and 

42, are given by 

?1 = & (49) 
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p2 = Z1 - i 

P5 = z2 - i 

P4 = 2 (ẑ zg - è z1 - |z2 + £) = 2(Zl- |)(z2- i) 

(59) 

(51) 

(52) 

D. Approximation and Least Squares Fitting 

In some cases, it may be desirable to find an approximate function 

of n multi-valued variables that fits a given complete function in 

accordance with some error criterion. The error criteria of this section 

is the method of least squares. 

Let K be an index on the H rows of the function table (as before) 

•and let ŷ  denote the actual value of the function evaluated for the 

values of the variables from the Kth row of the function table as in 

Equation 44, Let ŷ  denote the value of the approximating function 

evaluated for the values of the variables from the Kth row of the function 

table. The coefficients of the approximating polynomial are then to be 

chosen so that 

ient in least squares approximation. 

Theorem 3 : Given any finite complete function of multi-valued 

variables expressed as shown in Equation 4$, the approximate function 

formed by deleting one or more of the terms on the right-hand side of 

43 is the least squares best fitting function in the remaining terms. 

Proof: Equation 4$ is rewritten here. 

(53) 
K=1 

is a minimum. 

The orthogonal p̂  of Equations 4l, 42, 43, and 47 are quite conven-
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T 
f (xv Xg, xn) = 2 Vm <43) 

m=l 

Since the order in which the terms on the right-hand side of Equation 4$ 

are written is insignificant, assume only the first J terms on the right-

hand side of Equation 43 are kept (l < -J < T), and the .remaining terms 

are deleted. In accordance with Equation 45, the exact function values 

are given by 

T 

7ir = 2 Cy"P' K m mK 
m=l 

= C1PH + C2P2K + °5P5K + + CT%K * 

The approximate function values ŷ  can be "written as 

£ 
J 

rK =  2 Cm' PmK 
m=l 

= cl* P1K + C2' P2K + C5* P5K + * + Cj' PJK (̂ 4) 

where ĉ 1, c^',  . . . ,  c ' are the coefficients which make the approximate 

function the least squares best fit to the complete function. 

The squared error, which is greater than zero, is then given by 

E = Fl ~ 

K=1 K=1 K=1 

N 0 N J J 

= 2 T 
K=1 K=1 m=l m=l 

Differentiating Equation 55 with respect to 0̂ ', L=l, 2, ..., J, and 

setting the result equal to zero yields J equations of the form 
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SE » J 
, = 2 2 ( ™yKPLEC + PtK 2 °m' PmK̂  ~ 0 

dcL K=1 m=l 

or 

N J N 

2 PLK 2 %' pm[c = 2 • (57) 
K=1 m=l K=1 

Rearranging the summation on the left gives 

J H N 

2 V 2 PIKPmK = 2 yKPIK * (̂ 8) 
m=l K=1 K=1 

Making use of Equations 4l and 42 gives 

N 

°L' = 2 yKpnc • (59) 

K=1 

From Equation 47, we find 

C-' = CT (60) 
L L Q.E.D. 

Next, we will show that the error is given by 

2 2 , 2 
= CJ+1 + CJ+2 '* * N 

2 2 2 2 
" 2 yK " C1 " C2 " '*• ~ J 
K=1 

N p N p 

- 2 yK2 - £ K • (6l) 

K=1 K=1 

Squaring Equation 45 yields 

yK = (C1PH + C2P2K + ••• + CTPTK̂  * 

Carrying out the squaring indicated by E uation 62 and summing 

62 over the rows of the function table gives 
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N N T T 

2 yK = 2 (C!PH 2 GmPIaK + C2P2K 2 cIriPnK 
K=1 K=1 m=l m=l 

T 

+ ... + cTPaK 2 GmPmK̂  

= T  ̂ N T 

™i C1P1X 2 CmPmK + 2 C2P2K 2 
m=l K=1 m=l 

N T 

+ ... + 2 ct9tk 2 OmPmE * 
K=1 m=l 

Rearranging the order of the summations on the right-hand side gives 

N T N T I 

M
 

It 

Z Cl=m "2 plKPmK + P2KPmK 
K=1 m=l K=1 m=l K=1 

T N 
+ ... + 2 2 PTK PmK * 

m=l K=1 

(64) 

Making use of Equations 4l and 42 yields 

N 
V  A  2  2  2  , 2  
Zu yK = ̂ 1 + ̂ 2 + "" + 
K=1 

Similarly, we write yK in accordance with the results of Theorem 3 

as 

yK = C1 PH + C2P2K + ••• CJPJK ' 

Using the same procedures as those indicated in Equations 62 through 65, 

we find 

2 ŷ  = °î  + ̂  
K=1 
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The squared error is then given by 

N 
E = Z " "K)2 

K=1 
M 

% (C1PH + C2P2K + ,ee + CTPTK " C1PIK " C2P2K ' CJPJK̂  
K=1 

N 

2 (CJ+1PJ+1K + CJ+2PJ+2K + + CTPTK̂ 2 * 

K=1 

If the procedures indicated from Equations 63 through 65 are carried 

out on Equation 68, the result is Equation 6l 

2 2 2 
. ~ CJ+1 + CJ+2 + CT 

N 

2 2 2 2 2 
yK - ̂ 1 - ̂ 2 - "" " K=1 

N N 

- Z % - Z V. 
K=1 K=1 

Theorem 3 shows that a complete function written in the form of 

Equation 43 can be approximated by a least squares best fit by dropping 

one or more of the terms of Equation 43. The squared error is given by 

Equation 6l. A good approximating function would be one that made the 

ratio R (O < R < 1) of Equation 69 small. 

R = ® . (69) 

K=1 

E. Incomplete Functions 

An incomplete function of xmUti-valued variables is not defined for 
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all possible combinations of the variables. Table 3 shows a function of 

two three-valued z variables for which only six of the nine possible 

combinations of the variables produce a defined value of the function. 

Table 3. An incomplete function of and Zg 

f (zv Zg) 

0 0 yl 

0 2 
y3 

1 0 y4 

1 2 y6 

2 0 
y7 

2 2 
y9 

There are an infinite number of polynomials in ẑ  and zp that will 

represent the function of Table 2, each giving a different set of values 

to the undefined points. One convenient choice would be to define the 

function as being zero at the previously undefined points. 

However, consider Table 4 where all possible combinations of ẑ  and 

Zg are presented and where undefined values of the function are repre

sented by u's in the function value volumn. 

Table 4. A complete table of an incomplete function 

Zg ZX f (ẑ  Zg) 

oo 

0 1 Ug (undefined) 
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Table 4 (Continued) 

Z2 Z1 f (zv z2) 

0 2 
•y3 

1 0 y4 

1 1 u,_ (undefined) 

1 2 y6 

2 0 y? 

2 1 Ug (undefined) 

2 2 
y9 

A polynomial representing the incomplete function can "be found either 

through the method of Theorem 1 or by working with orthogonal terms of 

the p̂  type using Equations 4l and 45. The polynomial that results is 

f (zv z2) = yi + (- | yx + 2ug - i ŷ ) z± + (- § ŷ _+2ŷ  - i y?)z2 

2 2 
+ (sy± - Ug + I y5 ) Z3_ + (i yx - + è yT) z2 

+ yi " 5U2 + I " 5y4 + ^5 " Y6 + I Y7 ' u8 + ̂ 9) ziZ2 

+ (- \ yx+ I ̂  \ y3 + y4 " 2u5 + y6" ï y7 + ̂ 8 " ̂ 9) zi z2 

+ (- I yx + 13g - £ y3 + I y^ - 2u5 + I y6 - I yT + Ug - hfy) z
±

z^ 

+ ("B-! - 2U2 + IY5 - IY^ + U5 - IY6 + IY7 - 2U8 + ^) ZX ZG (70) 

It is noted that Up, û  and Ug may be arbitrarily chosen to make 

the coefficients of some of the terms equal to zero. Elimination of 
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terms from the polynomial representing the function may "be advantageous 

in certain applications. As an elementary example, the choice of 

Up = I y-L + i y5 (71) 

2 
eliminates the ẑ  term from Equation 70. 

In addition, the polynomial which is the least squares "best fitting 

approximation of an incomplete function may be of interest. Since the 

function may "be defined in an infinite number of ways, in general, at the 

undefined points, orthogonal terms are of no particular aid in finding 

the least squares best fit. Generally, no polynomial exists which 

represents the function exactly and becomes a least squares best fit in 

the terms remaining after some of the terms are dropped* 

However,, the following approach will yield the least squares best fit 

for approximating an incomplete function. Let the approximate value of 

the function for the Kth row of the function table be represented by y 

and let nu denote the terms which are functions of x.. that are retained 

in the approximating polynomial. Then 

?K = =1*1K + =2*2K + — + (72) 

where the c's are constants and is the evaluation of the HL term 

for the values of the variables from the Kth row of the function table. 

The c's are chosen so that the polynomial 

p = ĉ m, + CgZig + ... + cQmn (75) 

is the least squares best fit to the incomplete function. Then, if ŷ  

is the exact value of the function for the Kth row of the function table 

and N is the number of rows in the incomplete function table, the c's 

are chosen to minimize 
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N 

E - I! (% - ÎK
)! 

K=1 
N 

- 2 (yK ' ClV - C2™2K - - =nmnK)a <W 

K=1 

Differentiating Equation 74 with respect to 0̂ , L = 1, 2, n, 

and setting the results equal to zero yields n equations in n unknowns 

of the form 

H N N 

2 mliCmLK + C2 2 VlK + + Cn 2 ™nK™LE C1 
K=1 K=1 K=1 

H 

= Z % ' (75) 
K=1 

The system of equations indicated by Equation 75 can usually "be 

solved to give the desired least squares polynomial coefficients of 

Equation 75. As the number of terms in Equation'75 increases, digital 

computer solutions of the system of equations "becomes the only practical 

means to find the coefficients. Thus, finding a least squares "best fit 

for an incomplete function is generally a much harder task than finding 

the least squares best fit of a complete function. 
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III. LOGIC WITH TEBHARY VARIABLES 

A. Polynomials Representing Ternary Devices 

This section presents representations of functions of ternary 

variables in terms of real polynomials. Function tables that either 

represent or could represent ternary devices are presented and the 

corresponding real polynomial representations are given. 

The first types of ternary devices considered are shown in Figures 

1 and 2. The devices of these figures are single input devices-where the 

input is represented as being a z. or t. variable. Electrically speaking, 

this means that the input can be only one of three distinct electrical 

states. The states might be three distinct voltage levels, three distinct 

current levels, three distinct phases of some signal compared with a 

reference signal, etc. 'Furthermore, the output can be only one of three 

distinct electrical states. The function that the device performs on the 

input is placed inside the boxes of Figures 1 and 2. 

The three distinct electrical states may be associated with the 

three values of the z. variable or with the three values of the t. 
0 û 

variable. The output is some function of input ẑ  variables and is 

arithmetically one more than the output function in terms of the t̂  

variables. 

MacKay and Maclntyre (j) present a ternary counter circuit. Their 

basic ternary counter circuit is shown in Figure 3. The waveforms asso

ciated with the circuit are shown in Figure 4. The ternary counter may be 

represented by real polynomial in the following manner. Let one input 

state represent 0, 3, 6, 9, ... input pulses. Let a second input state 
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Figure 1. Representation of a single-input ternary device in terms 
of z variables 

9(1 , )  
9 (Ti )  

9 (1 , )  

Figure 2. Representation of a single-input ternary device in terms 
of t variables 

PULSE 
INPUT 

° —W 

Figure 3. Ternary counter circuit 
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PULSE INPUT 

VOLTAGE AT A 

Figure 4. Waveforms of ternary counter circuit 

f(Z„Z,) 
i <z„zA 

Figure 5. Representation of a two-input ternary device in terms 
of z variables 
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represent 1, k, 7, 10, ... input pulses. Finally, let a third input 

state represent 2, 5, 8, 11, ... input pulses. Associate an output 

state with each of the three distinct voltage levels which appear at A 

of Figure 3. Under these conventions, the device can "be represented as 

shown in Table 5 where the logical operation performed on the input is 

termed forward step. 

Tib'le 5® Function table for logical operation termed forward step 

Z1 tl fl(zl̂  gî l) 

0 - 1  1  0  

10 2 1 

2 1 0 -1 

The real polynomials representing the functions indicated by Table 

5 are 

fl(zl) = - 2 Z1 + 2 Z1 + 1 (̂ 6) 

and 

gl (ti) = ~ I ti2 " ̂  tl + 1 (77) 

A ternary device which performs a logical operation termed backward 

step on a . single input can be represented as shown in Table 6. 

Table 6. Function table for a logical operation termed backward step 

-̂ 2 (Zl̂  Sĝ î  

0 - 1  2  1  

1 0 0 -1 

2 1 1 0 
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The real polynomials representing the functions indicated by Table 6 

are 

f
2(zi) = 2 Z1 " 2 Z1 + 2 

and 

^ ~ 2 t1 - 1 (79) 

Next, consider the two-input ternary device of Figure. 5. These 

devices have the same properties as those in Figures 1 and 2 except that 

the devices operate on two inputs to produce the outpute 

As a first example, consider the circuit of Figure 6. Assume in 

Figure 6 that the zener diode has a breakdown voltage of B and that the 

inputs, and Wg, take on only the voltage values 0, . 5B, and 1.5B. 

The output voltage corresponding to the nine combinations of input 

voltages is given in Table 7. 

Table 7. Relation between Ŵ , Wg, and Ŵ  of Figure 5 

W- Wn . K 
2 1 3 

0 0 0 

0 .51 0 

0 1.5B à5B 

.5B 0 0 

.5B ,5B ,5B 

,5B 1.5B ,5B 

1.5B 0 0 

1.5B .5B ,5B 

1.5B 1.5B 1.5B 
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W, 

-N-

W, 

R 

i 
Figure 6. Ternary circuit with zener diode 

2 

n 

f4(Z|,Z2) 

Figure 7. Modulo adder with two paramétrons 

Z, 
o— -w-

z2 
o— 

1 
Figure 8. Circuit performing qua si-multiplieation 
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The circuit of Figure 6 may "be represented logically with 

variables in which a voltage value of zero is associated with the value of 

zero of the ẑ  variable, a voltage value of ,5B is associated with the 

value one of the Zj variable, and a voltage value of 1.5B is associated 

with the value of two of the z variable. The logical relation in terms 

of z. variables of the circuit of Figure 6 is given in Table 8, 

Table 8. Function table illustrating the logic of the circuit of Figure 5 

Z2 Z1 f3(v zs> 

0 0 0 

0 r 1 0 

0 2 1 

1 0 0 

1 1 1 

1 2 1 : 

2 0 0 

2 1 1 

2 2 2 

The real polynomial representing the function in Table 8 is 

fJ 'Z1>V = " i zl+ K2 + -lz2 - I Z±Z2 - |  zlz22 +  i z l z i  

(80) 

Next, consider the paramétrons presented in the articles by Schauer, 

et al., (13) and Hanson (3). Using the notation of the Schauer article, 

the inputs to a parametron are represented in the following way: 
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"O" - no oscillation 

"l" - an oscillation in phase with a reference 

"2" - an oscillation l80° out of phase with the reference 

Complementation is defined as a phase inversion of a signal. The 

complement of "0" is "0". The complement of "l" is "2". The complement 

of "2" is "1". 

The parametron is represented as a large circle with the threshold 

of the parametron indicated "by a Roman numeral inside the circle. If no 

Roman numeral is present, the threshold is assumed to "be one. A small 

circle is drawn where an input line meets a parametron when the input is 

to "be complemented. The inputs are assumed to have weight one unless a 

number "by an input line indicates a different weight. 

The output of a parametron will "be "0" unless the magnitude of the 

number that results from subtracting the number of inputs with an in phase 

oscillation from the number of inputs with a l80 degrees out of phase 

oscillation equals or exceeds the parametron threshold. In the; làtter 

case, the output of the parametron is a "l" when there are more in phase 

inputs than l80 degrees out of phase inputs and is a "2" when there are 

more l80 degrees out of phase inputs than in phase inputs. 

A two-input ternary device comprised of two paramétrons which per

forms the logical operation termed modulo addition is shown in Figure 7» 

The function table associated with the device is shown in Table 9® 

Table 9. Function table for a modulo adder 

%1 (̂zi, 

0 0 0 
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Z2 Z1 

0 1 1 

0 2 2 

1 0 1 

' 1 1 2 

1 2 0 

2 0 2 

2 1 0 

2 2 1 

The real polynomial representing the function in Table 9 is 

21 15 2 15 2 9 2 2 
f4(zVz2) = Z1 + Z2 + TT Z1Z2 " F" Z1 Z2 " T"Z1Z2 + ? Z1 Z2 

(81) 

Note that 

 ̂(ẑ / zp) = ̂  (z2' z]_) (®2) 

A two-input ternary device which performs a logical operation 

termed quasi-multiplication is shown in Figure 8, The voltage levels 

associated with the z variables of Figure 8 are such that a zero repre

sents the most positive Voltage, a two represents the second most positive 

voltage, and a one represents the least positive voltage or zero voltage. 

The function table associated with the device of Figure 8 is given as 

Table 10. 
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Table 10. Function table for a logical operation termed quasi-multiplica
tion 

z2 Z1 f
5 

z2> 

0  0 .  0  

0 1 0 

0 2 0 

10 0 

1 1 1 

12 2 

2 0 0 

2 1 2 

2 2 2 

The real polynomial representing the function in Table 10 is 

f5(*l, z2) = 2 ZjZq + i ziz2 * i' Z1Z£2 " ̂  zi%2 (85) 

Note that 

f5 z2̂  = f5 (z2' Zl̂  (81+) 

Next, consider the threshold device of Figure g. The device has 

two input currents, represented by ẑ  and zp. When the sum of the two 

currents is great enough, the zener diode breaks down. One logical 

operation that could be performed by the device of Figure 9 is repre

sented in Table 11 and is termed ternary half adder carry. The logical 

operation is such that the output function, fg (ẑ , zQ), is zero except 

that in those cases where the sum of the two inputs, ẑ  and ẑ , is three 

or more, the output function is a one. 
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-AAA-

O —VV 
OUTPUT 

Figure 9. Threshold device with zener diode 

z,—> 
0 VNA-

Zg—> 
O— w— f 

I 9-
1 

Figure 10. Goto pair circuit with two tunnel diodes 
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Table 11. Function table for a logical operation termed ternary half 
adder carry 

Z2 Z1 f6 (zl' zg) 

0 0 0 

0 1 0 

0 2 0 

10 0 

1 . 1  0  

12 1 

2 0 0 

2 1 1 

2 2 1 

The real polynomial representing the function in Table 11 is 

f6 - " 5 =1=2 + î Va2 + I zi2z2 " I zI2z22 (85) 

Mote that 

f6 (ZV Z2̂  = f6 (z2' Zl̂  (86) 

Another logical operation that could be performed by the device 

of Figure 9 is represented in Table 12. The output function, f̂  (z-̂ zg), 

of Figure 9 is zero except in the case where the sum of the two inputs, 

ẑ  and Zg, is four, the output function is two. 

Table 12. Function table representing a threshold device 

z2 z2 ŷ(zl' z2̂  

0 0 0 
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Table 12 (Continued) 

Z2 Z2 
f
7 (zpz2) 

0 1 0 

0 2 0 

1 0 0 

1 1 0 

1 2 0 

2 0 0 

2 1 0 

2 2 2 

The real polynomial representing the function in Table 12 is 

f7 (ZVZ2) = i zlz2 " ̂  zî z2 " i z±z2 + % zlz22 (87) 

Note that 

f7 zg) = f7 (%2' zl̂  (88) 

Another example of a two-input ternary device is given by the 

"Goto-pair" circuit discussed in Sims, et al. (l4) and shown in Figure 10. 

The Goto-pair circuit comprised of two tunnel diodes can be used as a 

majority logic device with three binary inputs. If two of the binary 

inputs are summed to produce one ternary input, the circuit of Figure 

10 results. Table 13 shows the logic associated with the circuit of 

Figure 10. 
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Table 13. Function table representing the logic associated with the 
circuit of Figure 10 

Z 2  Z1 ?8 (%!' 

0 0 0 

0 1 0 

0 2 1 

1 0 0 

1 1 1 

1 2 1 

One real polynomial representation for the incomplete function of 

Table 13 is 

f8 (zl>z2^ = " I z
x + I z!2 + 2z!z2 " Z1Z2 (89) 

Lowenschuss (6) demonstrates a device made from two Rutz (ll) 

transistors which is illustrated in Figure 11 and is a two-input ternary 

device. The logic associated with this device is given in Table 14. 

Table 14. Function table representing the logic associated with the 
circuit of Figure 11 

=2 Z1 f9 z2> f10 (%!' ̂  

0 0 0 0 

0 1 1 0 

0 o 0 2 

1 0 1 0 

1 1 0 2 
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AAr— 

Figure 11. Ternary device with two Rutz transistors 

o vw 

f 11 (Z, ,Zg) 

o——AAA-

Figure 12. Gating device 
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Table l4 (Continued) 

(zl/ z2̂  f10 Z2̂  

12 2 1 

2 0 0 2 

2 1 2 1 

2 2 2 2 

The real polynomials representing the functions in Table 14 are 

f9 (zv Z2̂  = 2zl + 2z2 " zl~ z2 " F Z1Z2 + 5z12z2 +5Z1Z22 

- § (90) 

and 

flo(zi,Zg) = -ẑ  - Zg + ẑ  + 2̂  + ̂  ẑ Zg - Sẑ Zg _ 

+ § (91) 

Note that 

f9 (zv zg) = f9 (z2' ZV (92) 

and 

flo(Zl,Z2) = f10 (Z2' Zl̂  

Finally, consider the two-input ternary device of Figure 12, 

In the circuit of Figure 12, if ẑ  is a one or a tara, the emitter-base 

diode of the transistor is biased off, the collector current is zero, and 

the output, f̂  (ẑ zg), is the same as Zg. If ẑ  is a zero, the transistor 

is biased on and the design parameters of the circuit can cause the output 

to be essentially zero. Table 15 shows the logic associated with the 
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circuit of Figure 11 which may be regarded as a gating device. 

Table 15. Function table for a gating device 

zi fu (%i' y 

0 o 

1 

% %2 

The real polynomial representing the function of Table 15 is 

fll - <1- * Z12> zs • W 

A full ternary adder is an example of a three-input ternary device. 

Designs for full ternary adders utilizing paramétrons are given in 

Schauer (13) and Hanson (3). The logic associated -with a full ternary 

adder is given in Table l6 where fip (ẑ , zp) is the "sum" associated with 

a full ternary adder and f̂  (z]_> is the "carry" associated with a 

full ternary adder. 

Table 16. Function table representing a full ternary adder 

Zj Zg f2_2 z2.> ) ^2.3 (zi' z2' z3^ 

0 0 0 0 0 

0 0 1 1 0 

0 0 2 2 0 

0 1 0 . 1 0 

0 1 1 2 0 

0 1 2 0 1 
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Table 16 (Continued) 

"̂ 12 (zl* z2'  ̂ 2̂.3 (Z3_' Z2' Z3 ̂ 

0 2 0 2 0 

0 2 1 0 1 

0 0 2 1 1 

1 0 0 1 0 

1 0 1 2 0 

1 0 2 0 1 

1 1 0 2 0 

1 1 1 0 1 

1 1 2 1 1 

1 2 0 0 1 

1 2 1 1 1 

1 2 2 2 1 

2 0 0 2 0 

2 0 1 0 1 

2 0 2 1 1 

2 1 0 0 1 

2 1 1 1 1 

2 1 2 2 1 

2 2 0 1 1 

2 2 1 2 1 

2 2 2 0 2 
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The real polynomials representing the functions of Table l6 are 

fl2 ( = zi + z2 + z3 + TT (Z1Z2 + Z1Z3 + Z2Z3̂  

-  r +  Z 1 Z 3  +  V 2 2  +  Z 2 %  + Z1Z32 + Z2Z32) 

287 9 , 2 2,2 2 2 2X 
" "5̂ 1Z2b + ? (̂ 1 Z2 + Z1 Z3 + Z2 y ) 

13 5 / 2 2 2 
+ T ("1 Z2Z3 4 V2 z3 + zlZ2z3 ) 

6 3  ,  2  2  2  2  ,  2  2 V  2 7  2  2  2  
" JT (Z1 z2 z3 + Z1 Z2Z3 + ziz2 z3 ) + zi z2 z3 (95) 

and 

f13 (VZ2'Z3̂  = " I (zlz2 + Z1Z3 + Z2Z3,) 
5  /  2  2  2  2  2  2 X  

+ t (Z1 z2 + Z1 z3 + zlz2 + Z2 z3 + Z1Z3 + Z2Z3 ) 

8 9  3 , 2 2  2 2 , 2  2 .  
+ T Z1Z2%3 " % ̂ 1 ̂2 + ̂ 1 Z3 + "2 Z3 ̂  

- T (Z1̂ Z2Z3 + Z1̂ Z3 + zi%̂  

21 , 2 2 . 2 2. 2 2\ 9 2 2 2 
+ (ẑ  Zg Ẑ  + ZgZ^ + Z^Zg Z^ ) - y Z^ Zg Z^ (9^) 

Note that 

f]_2 (ẑ zg,̂ ) = (zi'̂ jZg) 

=f12 (z2, z1,z?) 

= fl2 (Zg,Ẑ ,Ẑ ) 

= 1̂2 (z3'zi/zsP 

- "̂ 12 (z3,z2,zi) (97) 

and 

z2,z3) = fi3 (z%/ẑ fzg) 

= 2̂3 (z2;zl' Z3) 
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-  %  ( z 2 , Z 5 , Z 1 )  

= fy (z5̂ rz2) 

= F15 (98) 

B. Real Polynomial Identifies 

This section presents real polynomial identities which will "be used 

in proving the logical relations of the next section. The first identity, 

which may "be developed from a function table, is 

z n = ̂ n-l _ ̂  2 _ n̂-l _ g) % (99) 
J J v 

where is a three-valued variable and n is an integer greater than 

zero. The relation is easily proved by substitution of the values which 

zj can take on, namely, 0, 1, and 2, on each side of Equation 99 and seeing 

that an identity results. 

The next identity is 

t.211-1 = t. (100) 
3 3 

where n is an integer greater than zero. The identity is easily proved 

by substitution of the values which t.. can take on, namely -1, 0, and 1, 

on each side of Equation 100 and seeing that an identity results. 

The last identity presented is 

t.2n = t.2 (101) 
3 3 

where n is an integer greater than zero. This identity also is easily 

proved by substitution of the values which t.. can take on in each side of 

Equation 101 and seeing that an identity results. 

As an example of the use of the identities, consider the square of 

Equation 82 
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[f4 CZ1'Z2̂ 2 = [zl + Z2 + ir zlz2 - IT Z1Z22 " r Z1Z2 

+ I Z12 z22]2 • (102) 

It can be seen that if the squaring operation is carried out on the 

right-hand side of Equation 102 the resulting polynomial will contain 

terms containing ẑ  to the third and fourth powers. The third and fourth 

powers of ẑ  and Zg may be substituted for with expressions containing 

only first and second powers by use of Equation 99. The actual equation, 

that results from use of the foregoing procedures is 

(ẑ zg)]̂  = Z]2 + Zg2 4 ̂   ̂Ẑ  ̂  

- ̂  ziz2̂  + r zi\2 - (I#) 

The form of Equation 103 could have been deduced in light of Equations 

99 and 102 as 

[f̂  (ẑ zg) ]2 = Z]L2 + z22 + Aẑ zg + Bẑ zg + Cẑ zg2 + Dẑ zg2 (104) 

where A, B, 0, and D are undetermined constant coefficients. Substitution 

from rows of a function table representing the left-hand side of Equa

tion 104 produces a set of linear equations which may be solved for A, B, 

0, and D. It is noted that if the coefficients of the first two terms 

of Equation 104 are not deduced as being unity, they may be represented 

with undetermined coefficients and solved for the same manner as A, B, 

0, and D. 

Applying the procedures discussed in the foregoing, it may also be 

shown that 

[f5(Zl,Z2)]2 = -3Z]Zg + 3Z12Z2 + 3z]_Zg2 - 2Zl2Zg2 . (105) 
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Figure 15. Schematic representation of a logical relation 

Figure 14. Schematic representation of a full ternary adder 
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C, Proofs of Logical Relations 

This section will present some proofs of logical relations in terms 

of the real polynomials of the preceding section. The first proof will 

"be that . 

f2 (Z-l) = (f̂ )̂ ) . (106) 

The logical relation indicated "by Equation 106 can be represented 

schematically as shown in Figure 13. The proof of Equation 106 proceeds 

by working with the right-hand side and using Equations 76, 78, and 99. 

fl (fi(zi)) = ™ I [fl(z]_) I2 + 2 + 1 

= " I [" 1 Zl2 + I Z1 + 1]2 + 2 I Zl2 + I Z1 + 11 + 1 

= " 2 [Î ZI " P zi5 + F" zi2 + 5zi + 1]~ T zi2+ F Z1 + 2 + X 

=  -  F  z i 4  +  I F  z i 5  ~ W ~  Z 1  ~  Î Z L  +  2  

= - F - ̂ 1) + T (3%i2- ̂ î) - ̂  ̂i2 " î i + ̂  

5 2 7 
4Z1 -5=1 + 2 

= (%i) ' (107) 

Working with the t̂  variable, the relation equivalent to Equation 

10$ given by 

g2(t1) = g1 (g1(t1)) (108) , 

can be proved more easily. Working with the right-hand side of Equation 

118 and making use of Equations 77* 79; 100, and 101 yields 

g1(t1 (tL)) = - I [g1(t]_) ]2 - i [g1(t1)l + 1 

= '•** 1" *1 ~ i + il2 ~ i ~ 2 1] + 1 
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~ § ̂  tî  + I tî  " IT ti2 ~ t1 + 11+ 1112+ "Hi - i + 1 

~ w~ \k ~ I ti5 + F13!2 + r ti -1 

"  ¥  -  I  *1 +  F *I 2  +  I  T I  - 1  

# . i 1 

and 

= g2 (t1) » (109) 

Nëxt, we shall prove the following relations. 

f12 (%!' Z2' V = fk (zi'z2̂  z$) (HO) 

fl3 (zi'z2'z$) = f6 (zi'z2̂  + f6 (m) 

The logical relations of Equations 110 and ill can "be represented 

schematically as shown in Figure 14. 

Figure 14 may be considered as representing what is termed a full 

ternary adder. The inputs and zp could represent the "old "carry" 

that resulted from adding the next less significant digits of the two 

numbers. Then f̂  is the digit of the same significance as ẑ  

or z0 in the number of base three representing the sum of the two numbers 

being added, and f̂  (ẑ ,zp,ẑ ) is the "new carry" that is added to the 

next more significant digits in the two numbers being added. 

The proof of Equation 110 is found by working with the right-hand 

side and employing Equations 82, 95, 99, and 105. 

f4 (f4 

= fu (zvz2) + + T z3 f4(Vz2}~ f z/ f4(zl'z2) 
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- TT z3[f4 (zvz2)]2 + 1 z52 (Vz2)]2 

= Z5 + (1 + |^ Z5 - ̂  z/) f4 (Z]L,Z2) + (- Zj + | z^2) 

[f4 (zvZ2̂ 2 

= z5 + (i + |i ẑ  - ̂  z52)(zI + z2 + f2 ziz2 " IT Z1Z22 

-  f  z l z 2  +  I  a l V > + ( -  r  z 3  +  ?  Z 3 2 ) ( Z 1 2  +  Z 2 2  +  r  Z 1 Z 2  

- F ̂  " f V22 + r zl2z22) 

21 21 21 15 2 15 2 
= zi + z2 + z3 + IT ziz2 + TT Z1Z3 + T Z2Z3 " F" zi z2 " IT zi z3 

15 2 15 2 15 2 15 2 267 
• TT zi 2 - IT z2 z3 " ir Z1Z3 " r Z2Z3 - ™rziz2z3 

9 2 2 9 2 2 9 2 2  1 3 5  2 .  1 3 5  2  
+ % Z1 z2 + % zi z3 + ? z2 z3 + ~E~ zi Z2Z3 + ~B~ ziz2 z3 

135 2 63 2 2 63 2 2 63 2 2 
+ - 3- Z1 %2 z3 - 2T Z1 Z2%3 - %-*lZ2 Z3 

27 2 2 2 
+ g- Ẑ  Zg 

= f12 (wz5) • (1]̂ ) 

Similarly, the proof of Equation 111 is found by working with the 

right-side and employing Equations 82, 85, and 103. 

(zl'z2) + ̂ 6 K (Z1'Z2)' 

= " I ziz2 + I Z1Z22 + I zî z2 " I zl2z22 " I Z3 f4 (ZVZ2) 

5  „  2  -  „  x  ,  5  „  r / „  „  M 2  _  3  2  
+ % z3 (zi'V + ? z3 ̂ 4 (zi'V]2 - T z3 [f4(zi/z2)f 

7 5 2  5  2  3 2 2 / 7  5  2 N  
= " "Ç Z1Z2 + ? Z1Z2 + ¥ Z1 Z2 " TT Z1 Z2 + T Z3+ ¥ Z3 } 
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(Z'l + Z2 + IT Z1Z2 - IT zlz22 " TT zl2z2 + I zl2z22) 

+ <| z3 " Ï z32)<z12 + z22 + f Z1Z2 " F Zl2=2 " 

21 2 2 
+ T~ Z1 Z2 

= - % % " % % ~ ? % + % =l\ + # Zl̂  + % ̂  

5 2  5 2 5 2  8 9  3 2 2  
+ ï zi z3 + Tf ziz5 + î z2 z3 + B~ ziz2z3 - % zi z2 

3  2 2 3  2 2  4 5  2 „  4 5  2  4 5  2  
- % Z1 ̂  - ? %2 y - 3- %1 :2%3 - 5- % 

2 1  2 2  2 1  2  2  2 1  2 2 9 2 2 2 
+ 3- Zg %3 + ST %i % + 3" % %3 " 3 %1 %2 =5 

= f15 (ZVZ2̂ Z
3) • (115) 

D. Implementation of Product Terms 

The polynomials of the preceding sections have terms containing 

products of the variables. If these products could be implemented, 

then a weighted sum of the products thus formed would implement the 

polynomials directly. The weighted sum might theoretically be done in 

analog fashion. A great number of possible implementations for forming 

these products could be suggested. This section suggests implementation 

for forming the product of two z . variables and three z. variables. 
J J 

Figure 15 shows a schematic representation of implementation for 

forming the product of two ẑ  variables, ẑ  and ẑ . The summing 

junction of Figure 15 might be implemented, for example, by analog 

summation of voltages or currents employing weighting resistors. The 

logical relation indicated by Figure 15 is that 
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A + 

Figure 15. Schematic representation for implementation of 
zlz2 Product 
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zlz2 = f5 (Z1' zg) + f7 (v zg) • (114) 

Equation 114 can be proved by working with the right-hand side and making 

use of Equations 83 and 87, 

f5 (ZV zg) + f7 (%!' z2̂  

= i z!z2 + i -É i  Z-jZg2 - I Z l
2Z2

2 + I zxz2 - i z^2zg 

" ̂  Z1Z22 ̂  ̂  zi2z22 = ziz2 (115) 

Figure 16 shows a schematic representation of implementation for 

forming the product of three ẑ  variables, ẑ , Zg, and ẑ . The logical 

relation indicated by Figure l6 is that 

Z-ĵ ZgZj — f £- (f ̂ (ẑ y Zg) , Zj) + f-ĵ 2_ (Ẑ J (Zl/ Zg)) 

+ fn (Zg, f7(zv Ẑ )) + fu (zx, f7 (Zg, z5)) . (116) 

Equation ll6 can be proved by working with the right-hand side and making 

use of Equations 83, 87, 94, and 105. 

•̂ 5 (-̂ 5 (Z]_̂  zg)j Z3 ) ̂  "̂ 11 (Z3' ̂7 (Z]_f Zg)) + f 21 (Zg, fy (z-̂ , ẑ  ) ) 

-̂ 2_l (Zl' f7 (Z2' z3̂  

= (i ẑ  + i Ẑ 2) f̂  (zx, Zg) + (i ẑ  - i z/) [f5 (zx, Zg) ]2 

+ (| z3 - i z5
2) f

7 (z
r 

z
2) + (| z2 - i z2

2) f7 (zv Z3) 

+ (| Zx - è Zx2) fy (Zg, Z5) 

= (& z3 + i z52) (& ẑ Zg + i ẑ Zg + i ẑ Zg2 - i ẑ Zg2) 

+ (è z3 - i z52)(- 3 ZXZP + 3 zx2z2 + 3 ẑ g2 - i zx2 Zg2) 

+ (| z3 - è ?}2)(i Va • * zi% - 4 Z1Z22 + i Z12 z22) 
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Figure 16. Schematic representation for implementation of z, z z product 
•L c j 
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TV. CODES AND MMCTIOHAL DECODING 

A. Weighted Codes 

A weighted code of two three-valued z variables is illustrated in 

Table 17. 

Table 17. Function table for a weighted code 

Z2 Z1 fu V 

0 0 0 

0 1 1 

0 2 2 

1 0 3 

1 1 4 

1 2 5 

2 0 6 

2 1 . 7 

2 2 8 

The real polynomial representing the function of Table 17 is 

fll (ZV Z2̂  = Z1 + 5 z2 • (ll8) 

More generally, a weighted code could be defined as being linear in 

the multi-valued variables and as being represented by the equation 

f *2.> •••> xn) = "kg "*"••• + ̂ ^̂ n (H-9) 

where bQ, b̂ , ..., b̂  are constants. 

A single binary device has two well-defined states. A decimal 

device can be formed from four binary devices, since sixteen different 
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conditions can be represented "by the states of the four binary devices. 

Ten of the sixteen different conditions can be used̂ to represent the 

integers 0, 1, 2, ..., 9 with the other six conditions not used or 

defined. If a decimal device were formed from two binary devices and 

one ternary device, there would be twelve different conditions. Ten of 

the twelve different conditions can be used to represent the integers 

0, 1, 2, ..., 9 with only the other two conditions not used or defined. 

Table 18 represents a weighted code which could represent a decimal 

device. In Table 18, ẑ  and ẑ  are two-valued variables and ẑ  is a 

three-valued variable. 

Table 18. Function table for a weighted code associated with a decimal 
device 

z3 z2 Z1 f15 (zl'z2>z3̂  

0 0 0 0 

0 0 1 1 

0 1 0 2 

0 1 1 3 

1 0 0 k 

1 0 1 5 

1 1 0 6 

1 1 1 7 

2 0 0 8 

2 0 1 9 
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The real polynomial representing the function of Table 18 is 

f15 (ZV Z2> z3̂  = zi + 2z2 + 4z5 • (120) 

B. Non-weighted Codes 

Just as weighted codes are useful, so are non-weighted codes. 

The real polynomial representing a non-weighted code is not linear in the 

multi-valued variables. Table 19 gives an example of a non-weighted 

code which is termed a reflected ternary code. This code possesses 

the property that only one z variable changes value for any two adjacent 

rows of the function table. Reflected codes find use in connection with 

analog-to-digital conversion devices. 

Table 19. Function table for a reflected ternary code 

Z2 Z1 fl6 z2> 

0 0 0 

0 1 1 

0 •2 2 

1 2 3 

1 . 1 4 

1 0 5 

2 0 6 

2 1 7 

2 2 8 

The real polynomial representing the function of Table 19 is 

fl6 (zl/ zg) = z1 + 7z2 - 2 z/ - 4ẑ z2 + 2Z±Z2
2 . (121) 
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C. Functional Decoding 

Real polynomials are useful in describing the decoding of a set of 

multi-valued variables into a function of the variables. Such descrip

tions find application in digital-to-analog conversion devices and can 

also be useful in devices which transform a digital input to a function

ally related digital output. 

As an example of functional decoding consider the "square" function 

of Table 20. 

Table 20. Function table for a square function 

Z2 ,Z1 f17 (Zl' Z2̂  

0 0 0 

0 • 1 1 

0 2 4 

' 1 0 9 

1 1 l6 

1 2 25-

2 0 36 

2 1 49 

2 2 64 

The real polynomial representing the function of Table 20 is 

fjrj (ẑ  z£) = zx2 + 9Zg2 + 6ẑ zg . (122) 

D. Partitioning 

For incomplete functions, partitioning the function table is a 

useful technique in finding a real polynomial representation. As 
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previously noted, an incomplete function has an infinite number of real 

polynomial representations. Consider the square function of Table 21. 

Table 21. Incomplete three variable square function 

• Z3 Z2 Z1 ^18 (%!' Sg, ^) 

0 0 0 0 

0 0 1 1 

0 0 2 4 

0 1 0 9 

0 1 1 16 

0 1 2 25 

0 2 0 36 

0 2 1 49 

0 2 2 64 

1 0 0 81 

1 0 1 100 

1 0 2 121 

The first nine rows of Table 21 have z__ constant. The real 
3 

polynomial which describes the first nine rows of Table 21 is independ

ent of z, and is f̂  (ẑ , ẑ ) given previously in Equation 122. The 

last three rows of Table 18 have zp and ẑ  constant. The real poly

nomial which describes the last three rows of Table 18 is independent 

of Zg and ẑ  and is given by 

(ẑ ) = 81 + 18 ẑ  + ẑ   ̂ (123) 

A real polynomial that describes the incomplete function of Table 18 
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can "be deduced as 

fl8 (zi/ z2' = (l " zj) (zi/ + ̂  (z]_) 

2 2 2 
= 81 z^ + z1 +9 z2 +6 z1z2 + 18 ẑ  - 9 zg Zj + 6 ziz2z3 • 

(124) 

E. Segmented Approximation 

The use of different polynomials to describe different parts of a 

given curve is termed segmented approximation. Partitioning a function 

table is a useful method for finding the segmented approximation of a 

given curve. It has been seen that a least squares best fitting approxi

mation of a complete function is relatively easier to find ttfran a least 

squares best fitting approximation of an incomplete function. The function 

table of an incomplete function can often be partitioned such that some 

of the partitions can be considered complete functions. 

For example, the first nine rows of the incomplete function of 

Table 21 can be considered a complete function of the variables and ẑ . 

A least squares best fitting approximation to the function describing 

the first nine rows may be found and may be used in the real polynomial 

describing all twelve rows according to the methods of the previous 

section. 

In general, functions which are the least squares best fitting 

approximations to partitions of the function table may be found. These 

functions can then be combined to represent the entire function table 

according to the methods of the preceding section. In addition, it may 

be desirable to define undefined points of an incomplete function in order 

to simplify the finding of a good approximation to the function. 
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F. Interpolation 

When a function of multi-valued discrete variables is a representa

tion of a continuous function, interpolation is possible. For example, 

consider the square function of Table 20. The real polynomial represent

ing the function is, as previously given, 

f17 (ZV z2) = zi2 + 9 z22 + 6 ziz2 • (125) 

Assume that z_ is held constant at one of its three allowed values 

and the variable.ẑ  is allowed to vary continuously between zero and two 

rather than taking on its three allowed values only. With Zg constant, 

(ẑ , Zg) is a parabolic function in ẑ . As ẑ  varies continuously 

from zero to two, a continuous parabolic curve is described running 

through the three points where f̂  (ẑ , Zg) was defined at ẑ  equals 

zero, one, and two. The continuous square function which f̂ (ẑ , Zg) 

is representing also varies continuously between the defined points where 

ẑ  equals zero, one, and two. When well-behaved continuous functions 

are represented, interpolation can be used to give "finer grained" 

functions. This can be accomplished by replacing ẑ  with 

= v (Z1V ẑ g) = i (zxl + 3 z12) (126) 

which places nine points on the continuous parabolic curve previously 

described rather than only three which itself would place on the curve. 
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V. CONCLUSIONS AND SUMMARY 

The dissertation shows how to develop a real polynomial representation 

of a function of multi-valued variables from a function table. The 

least squares best-fitting approximation to a function is also discussed 

in terms of real polynomials. 

Real polynomials are then presented which could represent ternary 

devices. The logic of. networks containing, for the most part, ternary 

devices is demonstrated. Direct implementation of product terms of the 

real polynomials is considered and demonstrated for two special cases. 

Weighted and non-weighted codes are presented. In particular, a 

weighted code with a mixture of two-valued and three-valued variables is 

presented. 

Real polynomials which could be used in functional decoding are 

presented. Functional decoding finds use in digital-to-analog conversion 

devices and possibly in converting a digital input to a corresponding 

digital output. Segmented approximation of functions of multi-valued 

variables is discussed. Also discussed is interpolation for real 

polynomials which represent continuous functions. 
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Înternational Business Machines] Journal of Research and Development 

1-5: 212-222. 1957. 

12. Sander, W. B. Application of real polynomials of binary variables. 
Unpublished Ph.D. thesis. Ames, Iowa, Library, Iowa State University 
of Science and Technology. 1965. 

15. Schaiaer, R. F., Stewart, R. M., Pohm, A. V., and Read, A. A. Some 
applications of magnetic film paramétrons as logical devices. 
Institute of Radio Engineers Transactions on Electronic Computers 
EC-9: 515-520. i960. 



www.manaraa.com

64 

14. Sims, R. C., Beck, E. R., and Kamm, V. C. A survey of tunnel-diode 
digital techniques. Institute of Radio Engineers Proceedings 49-1: 
156-146. 1961. 

15. Vacca, R. A three-valued system of logic and its application to base 
three digital circuits. International Conference on Information 
Processing Proceedings 407-4l4. 1959. 



www.manaraa.com

65 

VU. ACKNOWLEDGEMENTS 

The writer wishes to thank his major professor, Dr. R. G. Brown, 

for his guidance and advice. 

The writer also wishes to thank Dr. W. B. Sander whose Ph.D. thesis 

and whose comments greatly aided the writer. 

Finally, the writer wishes to thank Mrs. Renette Peterson, for her 

excellent typing of the manuscript. 


	1964
	Real polynomial representations of multi-valued logic
	Howard Tilford Hendrickson
	Recommended Citation


	tmp.1411654714.pdf.6QRVO

